Time resolved photoluminescence and deep level transient spectroscopy have been used to monitor the effect of rapid thermal annealing on bulk GaInP and GaInP/AlGaInP quantum wells grown by solid source molecular beam epitaxy similar to those used in 650 nm range lasers. Following rapid thermal annealing at temperatures up to 875 °C, reductions in the concentration of several deep level traps are observed. Correlation of these data with photoluminescent intensity and lifetime measurements indicate that the defect labeled N3, 0.83 eV below the conduction band, is the dominant recombination center. The combination of these two transient spectroscopy measurement techniques is therefore not only able to measure the change in deep level concentration, but also to correlate this change with improved carrier lifetimes and, ultimately, reduced threshold current densities in quantum well lasers. There is also evidence to suggest that this same defect, possibly a phosphorous vacancy or a related complex, plays an important role in other GaInP based devices.
Fluorescence‐guided surgery (FGS) is routinely utilized in clinical centers around the world, whereas the combination of FGS and photodynamic therapy (PDT) has yet to reach clinical implementation and remains an active area of translational investigations. Two significant challenges to the clinical translation of PDT for brain cancer are as follows: (1) Limited light penetration depth in brain tissues and (2) Poor selectivity and delivery of the appropriate photosensitizers. To address these shortcomings, we developed nanoliposomal protoporphyrin IX (Nal‐PpIX) and nanoliposomal benzoporphyrin derivative (Nal‐BPD) and then evaluated their photodynamic effects as a function of depth in tissue and light fluence using rat brains. Although red light penetration depth (defined as the depth at which the incident optical energy drops to 1/e, ~37%) is typically a few millimeters in tissues, we demonstrated that the remaining optical energy could induce PDT effects up to 2 cm within brain tissues. Photobleaching and singlet oxygen yield studies between Nal‐BPD and Nal‐PpIX suggest that deep‐tissue PDT (>1 cm) is more effective when using Nal‐BPD. These findings indicate that Nal‐BPD‐PDT is more likely to generate cytotoxic effects deep within the brain and allow for the treatment of brain invading tumor cells centimeters away from the main, resectable tumor mass.
The effect of deep level impurities on static and dynamic properties of InGaP-based light emitters grown by all-solid-source molecular-beam epitaxy is analyzed. The improvement of the output power and the decrease in modulation bandwidth induced by the burn-in process are explained by the recombination enhanced annealing of one deep level trap. This assumption is experimentally proven through comparison of small-signal analysis for resonant cavity light-emitting diodes operating at 650 nm and deep level transient spectroscopy results. Finally, the concentration of the midgap recombination center N3 in the active region is shown to play an important role in the performance of the InGaP devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.