An approach to obtaining high-resolution image reconstruction from low-resolution, blurred, and noisy multiple-input frames is presented. A recursive-least-squares approach with iterative regularization is developed in the discrete Fourier transform (DFT) domain. When the input frames are processed recursively, the reconstruction does not converge in general due to the measurement noise and ill-conditioned nature of the deblurring. Through the iterative update of the regularization function and the proper choice of the regularization parameter, good high-resolution reconstructions of low-resolution, blurred, and noisy input frames are obtained. The proposed algorithm minimizes the computational requirements and provides a parallel computation structure since the reconstruction is done independently for each DFT element. Computer simulations demonstrate the performance of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.