An approach to obtaining high-resolution image reconstruction from low-resolution, blurred, and noisy multiple-input frames is presented. A recursive-least-squares approach with iterative regularization is developed in the discrete Fourier transform (DFT) domain. When the input frames are processed recursively, the reconstruction does not converge in general due to the measurement noise and ill-conditioned nature of the deblurring. Through the iterative update of the regularization function and the proper choice of the regularization parameter, good high-resolution reconstructions of low-resolution, blurred, and noisy input frames are obtained. The proposed algorithm minimizes the computational requirements and provides a parallel computation structure since the reconstruction is done independently for each DFT element. Computer simulations demonstrate the performance of the algorithm.
In this paper, we present a wavelet-based Contourlet transform (WBCT) method to adaptive optics (AO) image denoising. This method is implemented through combining with BayesShrink theory to estimate the threshold and then improving the adaptive method of selecting threshold, finally obtaining the optimal threshold. The WBCT transform coefficients of different decomposition scales and different direction to select the adaptive optimal threshold to achieve denoising. We evaluate our algorithm using the DWT-NABayesShrink algorithm, DTCWT-BayesShrink algorithm and CbATD algorithm as a benchmark. Using simulated and real observed AO images, we show that our approach with WBCT algorithm exhibits better performance both in peak signal-to-noise ratio (PSNR) and visual quality, which opens up many perspectives for AO image denoising in the astronautics field.
To improve the effect of adaptive optics images’ restoration, we put forward a deconvolution algorithm improved by the EM algorithm which joints multiframe adaptive optics images based on expectation-maximization theory. Firstly, we need to make a mathematical model for the degenerate multiframe adaptive optics images. The function model is deduced for the points that spread with time based on phase error. The AO images are denoised using the image power spectral density and support constraint. Secondly, the EM algorithm is improved by combining the AO imaging system parameters and regularization technique. A cost function for the joint-deconvolution multiframe AO images is given, and the optimization model for their parameter estimations is built. Lastly, the image-restoration experiments on both analog images and the real AO are performed to verify the recovery effect of our algorithm. The experimental results show that comparing with the Wiener-IBD or RL-IBD algorithm, our iterations decrease 14.3% and well improve the estimation accuracy. The model distinguishes the PSF of the AO images and recovers the observed target images clearly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.