An Experimental investigation was carried out to determine performance, emissions and combustion characteristics of diesel engine using nanoaluminum oxide (n-Al2O3) blended diesel fuel. The n-Al2O3 of size 40 nm was blended into diesel fuel. The different dosing levels studied were 250mg, 500mg, 750mg, and 1000mg. Each dosing levels of nanoparticles were mixed with one litre of diesel to prepare test fuels. The n-Al2O3was dispersed by means of an ultrasonic vibrator in order to produce uniform dispersion of n-Al2O3 in the diesel fuel. nanoAl2O3possess better combustion characteristics and enhanced surface-area-to-volume ratio and hence allows more amount of diesel to react with the oxidizer which in turn enhances the burning efficiency of the test fuels. The diesel fuel with and without n-Al2O3 additive were tested in a direct injection diesel engine at different load conditions and the results revealed that a considerable enhancement in the brake thermal efficiency and substantial reduction in content of NOX and unburnt hydrocarbon (UBHC) at all the loads compared to neat diesel were observed due to nanoAl2O3’s better combustion characteristics and improved degree of mixing with air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.