Due to low cost, ease of implementation and flexibility of wireless sensor networks (WSNs), WSNs are considered to be an essential technology to support the smart grid (SG) application. The prime concern is to increase the lifetime in order to find the active sensor node and thereby to find once the sensor node (SN) dies in any region. For this reason, an energy-efficient Dynamic Source Routing (DSR) protocol needs to provide the right stability region with a prolonged network lifetime. This work is an effort to extend the network's existence by finding and correcting the considerable energy leveraging behaviors of WSN. We build a comprehensive model based on real measures of SG path loss for different conditions by using the characteristics of WSN nodes and channel characteristics. This method also establishes a hierarchical network structure of balanced clusters and an energy-harvesting SN. The cluster heads (CHs) are chosen by these SN using a low overhead passive clustering strategy. The cluster formation method is focused on the use of passive clustering of the particle swarm optimization (PSO). For the sake of eliminating delayed output in the WSN, energy competent dynamic source routing protocol (EC-DSR) is used. Chicken swarm optimization (CSO) in which optimum cluster path calculation shall be done where distance and residual energy should be regarded as limitation. Finally, the results are carried out with regard to the packet distribution ratio, throughput, overhead management, and average end-to-end delay to demonstrate the efficiency of the proposed system.
Internet of things is an integral part in today's development of smart city, now without internet is became like nothing is possible in the world especially for corporate systems where they use internet for communication purpose. Internet communicates through radio waves, line of sight not required. Internet of things (IoT) is expanding it's outreach to every aspect of our daily life and our needs. The IoT energy consumption can also be reduced by utilizing network coding in Internet of things in dayto -day life. In Automatic Toll collection system uses RFID technology where they help to reduce the Toll gate traffic and avoid other illegal passage of vehicles through a Toll gate. This paper shows, for the first time, that Toll booth can be completely managed using the 'Internet of Things' concept based on the RFID technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.