This study was conducted to isolate cellulose degrading bacteria from mangrove soil of Mahanadi river delta, Odisha, India and also to evaluate their cellulase production ability. Results showed that in total fifteen cellulose degrading bacteria were isolated based on their halo zone formation on congored agar medium. Their maximum carboxymethylcellulose hydrolysis capacities (HC value) were ranged from 1.18 to 2.5 cm. A CMCase test of these fifteen isolates showed that their enzyme activity ranged from 2.471 to 98.253 U/ml/min. From the morphological, aand biochemical characterisation, the isolates were identified as Micrococcus spp., Bacillus spp., Pseudomonas spp., Xanthomonas spp. and Brucella spp.
In the present article, a higher order shear deformation theory is used to develop a finite element model for the free vibration analysis of a rotating functionally graded material plate in the thermal environment. The model is based on an eight-noded isoparametric element with seven degrees-of-freedom per node. The material properties are temperature dependent and graded along its thickness according to a simple power law distribution in terms of volume fraction of the constituents. The general displacement equation provides C0 continuity, and the transverse shear strain undergoes parabolic variation through the thickness of the plate. Therefore, the shear correction factor is not used in this theory. The obtained results are compared with the published results in the literature to determine the accuracy of the method. The effects of various parameters like hub radius, rotation speed, aspect ratio, thickness ratio, volume fraction index, and temperature on the frequency of rotating plate are investigated.
This paper deals with the free vibration and buckling analysis of functionally graded material (FGM) plates, resting on the Winkler–Pasternak elastic foundation. The higher order shear deformation plate theory (HSPT) is adopted for the realistic variation of transverse displacement through the thickness, using the power law distribution to describe the variation of the material properties. Both the effects of shear deformation and rotary inertia are considered. In the present model, the plate is discretised into [Formula: see text] eight noded serendipity quadratic elements with seven nodal degrees of freedom (DOFs). The validation study is carried out by comparing the calculated values with those given in the literature. The effects of various parameters like the Winkler and Pasternak modulus coefficients, volume fraction index, aspect ratio, thickness ratio and different boundary conditions on the behaviour of the FGM plates are studied.
This paper deals with the free vibration of a skew functionally graded material (FGM) plate in the thermal environment. A higher-order shear deformation theory (HOSDT) is employed to develop a finite element model of the plate. The material properties are assumed to be temperature-dependent and are graded along the thickness direction as per simple power law distribution in terms of volume fraction of metal and ceramic constituent phases. The model is based on an eight-noded isoparametric element with seven degrees of freedom (DOFs) per node. The general displacement equation provides C[Formula: see text] continuity. The transverse shear strain undergoes parabolic variation through the thickness of the plate. The governing equations are derived using the Hamilton’s principle. The obtained results are compared with the published results to determine the accuracy of the method. The effects of various parameters like aspect ratio, side-thickness ratio, volume fraction index, boundary conditions and skew angle on the natural frequencies are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.