Understanding microscopic parameters that control steepness of the temperature variations of segmental relaxation (fragility) and the glass transition phenomenon remains a challenge. We present dielectric and mechanical relaxation studies of segmental dynamics in various polymers with different side groups and backbone structures. The results have been analyzed in terms of flexibility of backbone and side groups of polymeric molecules, as suggested by the recent theoretical works by Dudowicz et al. A comparison of structures with identical backbones and varying side groups and identical side groups but different backbones reveals that the flexibility of side groups relative to the flexibility of the backbone is the most important factor controlling fragility in polymers, while the glass transition temperature T g depends primarily on the backbone flexibility and the side group bulkiness (occupied volume). Based on these results and analysis of literature data we formulated a modified approach to understand the role of chemical structure in segmental dynamics: (i) Polymers with stiff backbones always have high T g and fragility, while (ii) polymers with flexible backbones and no side groups are the strongest; (iii) however, for the most common type of polymeric structure, C-C or Si-O backbone with side groups, fragility increases with increasing "relatiVe" stiffness of side groups versus the backbone. In this class of polymers, lowest fragility is expected when the side groups are of similar chemical structure (or flexibility) as the backbone, as in the case of polyisobutylene, one of the strongest polymers known.
Combining dielectric spectroscopy and neutron scattering data for hydrated lysozyme powders, we were able to identify several relaxation processes and follow protein dynamics at different hydration levels over a broad frequency and temperature range. We ascribe the main dielectric process to protein's structural relaxation coupled to hydration water and the slowest dielectric process to a larger scale protein's motions. Both relaxations exhibit a smooth, slightly super-Arrhenius temperature dependence between 300 and 180 K. The temperature dependence of the slowest process follows the main dielectric relaxation, emphasizing that the same friction mechanism might control both processes. No signs of a proposed sharp fragile-to-strong crossover at T approximately 220 K are observed in temperature dependences of these processes. Both processes show strong dependence on hydration: the main dielectric process slows down by six orders with a decrease in hydration from h approximately 0.37 (grams of water per grams of protein) to h approximately 0.05. The slowest process shows even stronger dependence on hydration. The third (fastest) dielectric relaxation process has been detected only in samples with high hydration ( h approximately 0.3 and higher). We ascribe it to a secondary relaxation of hydration water. The mechanism of the protein dynamic transition and a general picture of the protein dynamics are discussed.
Despite extensive efforts in experimental and computational studies, the microscopic understanding of dynamics of biological macromolecules remains a great challenge. It is known that hydrated proteins, DNA and RNA, exhibit a so-called "dynamic transition." It appears as a sharp rise of their mean-squared atomic displacements r2 at temperatures above 200-230 K. Even after a long history of studies, this sudden activation of biomolecular dynamics remains a puzzle and many contradicting models have been proposed. By combining neutron and dielectric spectroscopy data, we were able to follow protein dynamics over an extremely broad frequency range. Our results show that there is no sudden change in the dynamics of the protein at temperatures around approximately 200-230 K. The protein's relaxation time exhibits a smooth temperature variation over the temperature range of 180-300 K. Thus the experimentally observed sharp rise in r2 is just a result of the protein's structural relaxation reaching the limit of the experimental frequency window. The microscopic mechanism of the protein's structural relaxation remains unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.