Cubane (C8H8) and fullerene (C60) are famous cage molecules with shapes of platonic or archimedean solids. Their remarkable chemical and solid-state properties have induced great scientific interest. Both materials form polymorphic crystals of molecules with variable orientational ordering. The idea of intercalating fullerene with cubane was raised several years ago but no attempts at preparation have been reported. Here we show that C60 and similarly C70 form high-symmetry molecular crystals with cubane owing to topological molecular recognition between the convex surface of fullerenes and the concave cubane. Static cubane occupies the octahedral voids of the face-centred-cubic structures and acts as a bearing between the rotating fullerene molecules. The smooth contact of the rotor and stator molecules decreases significantly the temperature of orientational ordering. These materials have great topochemical importance: at elevated temperatures they transform to high-stability covalent derivatives although preserving their crystalline appearance. The size-dependent molecular recognition promises selective formation of related structures with higher fullerenes and/or substituted cubanes.
We have prepared hydrogenated single-wall and multiwall carbon nanotubes, as well as graphite, via a dissolved metal reduction method in liquid ammonia. The hydrogenated derivatives are thermally stable up to 400°C. Above 400°C, a characteristic decomposition takes place accompanied with the simultaneous formations of hydrogen and a small amount of methane. Transmission electron micrographs show corrugation and disorder of the nanotube walls and the graphite layers due to hydrogenation. The average hydrogen contents determined from the yield of evolved hydrogen correspond to the compositions of C 11 H for both types of nanotubes and C 5 H for graphite. Hydrogenation occurred even on the inner tubes of multiwall nanotubes as shown by the chemical composition and the overall corrugation. The thermal stability and structural results suggest the formation of C-H bonds in nanotubes and graphite.
Single crystals of a linear cycloadduct conducting polymer, (KC(60))n, have been grown that are a few tenths of a millimeter in length. Partial oxidation under toluene transformed these crystals into bundles of fibers. The degree of polymerization exceeded 100,000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.