We demonstrate long trion spin lifetimes in a WSe2 monolayer of up to 150 ns at 5 K. Applying a transverse magnetic field in time-resolved Kerr-rotation measurements reveals a complex composition of the spin signal of up to four distinct components. The Kerr rotation signal can be well described by a model which includes inhomogeneous spin dephasing and by setting the trion spin lifetimes to the measured excitonic recombination times extracted from time-resolved reflectivity measurements. We observe a continuous shift of the Kerr resonance with the probe energy, which can be explained by an adsorbate-induced, inhomogeneous potential landscape of the WSe2 flake. A further indication of extrinsic effects on the spin dynamics is given by a change of both the trion spin lifetime and the distribution of g-factors over time. Finally, we detect a Kerr rotation signal from the trion's higher-energy triplet state when the lower-energy singlet state is optically pumped by circularly polarized light. We explain this by the formation of dark trion states, which are also responsible for the observed long trion spin lifetimes. arXiv:1702.03712v1 [cond-mat.mtrl-sci]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.