Intriguingly, similar neurotransmitters and nuclei within the hypothalamus control stress and reproduction. GnRH neurone recruitment and activity is regulated by a balance between stimulation, suppression and permissiveness controlled by noradrenaline, neuropeptide Y and serotonin from the brain stem, impact from glutamate in the medial preoptic area and neuropeptide Y in the arcuate nucleus, in opposition to the restraining influences of ␥-aminobenzoic acid within the medial preoptic area and opioids from the arcuate nucleus. Stress also activates neuropeptide Y perikarya in the arcuate nucleus and brain stem noradrenaline neurones. The latter project either indirectly, via the medial preoptic area, or directly to the paraventricular nucleus to release corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP). Within the medial preoptic area, GnRH neurones synapse with CRH and AVP axons. Stimulation of CRH neurones in the paraventricular nucleus also activates ␥-aminobenzoic acid and opioid neurones in the medial preoptic area and reduces GnRH cell recruitment, thereby decreasing GnRH pulse frequency. Oestradiol enhances stress-induced noradrenaline suppression of LH pulse frequency but when applied in the paraventricular nucleus or brain stem, and not in the medial preoptic area or arcuate nucleus. The importance of CRH and AVP in the medial preoptic area needs confirming in a species other than the rat, which uses adrenal activation to time the onset of the GnRH surge. Another stress-activated pathway involves the amygdala and bed of the nucleus stria terminalis, which contain CRH neurones and accumulate ␥-aminobenzoic acid during stress.
Oestradiol (E(2)) sensitizes the stress and reproductive axes in vivo. Our current aim is to investigate whether E(2) directly influences hypothalamic AVP and GnRH release in vitro. Within 10 min of ewe killing, saggital midline hypothalamic slices (from the anterior preoptic area to mediobasal hypothalamus, 2 mm thick, two per sheep) were dissected, placed in oxygenated MEM-alpha at 4 degrees C and within next 2 h were singly perifused at 37 degrees C with oxygenated MEM-alpha (pH 7.4; flow rate 150 microl/min) alone (vehicle; n = 15), with low (6 pg/ml; n = 14) or high E(2) (24 pg/ml; n = 13). After 5 h equilibration, 10 min fractions were collected for 3 h with exposure to 100 mm KCl for 10 min within the last hour. Concentrations of AVP and GnRH were measured by RIA. Baselines for AVP and GnRH were 7.0 +/- 1.1 and 17.4 +/- 0.8 pg/ml respectively. Basal values with low E(2) were similar to vehicle for AVP (7.5 +/- 1.2 pg/ml) and GnRH (17.5 +/- 1.1 pg/ml). However, high E(2) increased basal AVP (11.7 +/- 1.4 pg/ml; p < 0.05) and GnRH (23.7 +/- 1.4 pg/ml; p < 0.05). After KCl, AVP and GnRH respectively, increased (p < 0.05) to 25.6 +/- 7.5 and 38.2 +/- 5.6 (vehicle), 26.3 +/- 7.5 and 23.6 +/- 2.1 (low E(2)) and 24.1 +/- 5.4 and 41.3 +/- 6.6 pg/ml (high E(2)). After KCl, maximum values of AVP occurred at 20 and GnRH at 30 min. In conclusion, high E(2) concentration augments AVP and GnRH release by direct action on the ewe hypothalamus.
The present study aims to ascertain the influence of gamma-amino butyric acid (GABA)(A or B) receptors on arginine vasopressin (AVP) release in vitro and determine whether E(2) modulates GABA-AVP interaction. Within 10 min of ewe killing, saggital midline hypothalamic slices (from the anterior preoptic area to the mediobasal hypothalamus along with the median eminence, 2-mm thick, two per ewe) were dissected, placed in oxygenated minimum essential media (MEM)-alpha at 4 degrees C and within 2 h were singly perifused at 37 degrees C with oxygenated MEM-alpha (pH 7.4; flow rate 0.15 ml/min), either with or without E(2) (24 pg/ml). After 4-h equilibration, 10-min fractions were collected for 4 h interposed with a 10-min exposure at 60 min to a specific GABA(A or B) receptor agonist or antagonist at various doses (0.1-10 mm). GABA(A) (muscimol; no E(2), n = 7 perifusion chambers, with E(2), n = 11) or GABA(B) (baclofen; no E(2), n = 8, with E(2), n = 15) agonists (10 mm) did not influence AVP concentrations. However, AVP release increased (p < 0.05) 20-30 min after exposure to 10 mm GABA(A or B) antagonists (bicuculline, no E(2), n = 7: from 4.6 +/- 0.7 to 33.0 +/- 0.4, with E(2), n = 17: from 11.9 +/- 1.4 to 32.8 +/- 6.0; CGP52432, with E(2), n = 14: from 14.0 +/- 2.6 to 28.8 +/- 3.9 pg/ml). At the end of the collection period, hypothalamic slices responded to KCl (100 mm) with AVP efflux (p < 0.05). GABA(B) but not GABA(A) antagonist-stimulated AVP release was enhanced in the presence of E(2). In summary, AVP release is under the inhibitory influence of GABA input with further potentiation by E(2) through GABA(B) receptors in vitro.
The present study investigates the influence of alpha(1)-adrenoreceptors in GnRH release in vitro and determines whether oestradiol modulates alpha(1)-adrenoreceptor-GnRH interaction. Within 10 min after ewe sacrifice, saggital midline hypothalamic slices were dissected, placed in oxygenated Minimum Essential Media-alpha (MEM-alpha) at 4 degrees C and within 2 h were singly perifused at 37 degrees C with oxygenated MEM-alpha (pH 7.4; flow rate 0.15 ml/min), either with or without oestradiol (24 pg/ml). After 4-h equilibration, 10-min fractions were collected for 4 h interposed with a 10-min exposure at 60 min to specific alpha(1)-adrenoreceptor agonist (methoxamine) or antagonist (thymoxamine) at various doses (0.1-10 mm). The alpha(1)-adrenoreceptor agonist (10 mm) increased (p < 0.05) GnRH release at 90 min both in presence and absence of oestradiol. However, in presence of oestradiol, alpha(1)-adrenoreceptor agonist (10 mm)-induced GnRH release remained elevated (p < 0.05) for at least 60 min. The bioactivity of the released GnRH was studied using a hypothalamus-pituitary sequential double-chamber perifusion. Only after exposure of hypothalamic slices to alpha(1)-adrenoreceptor agonist (10 mm), did the hypothalamic eluate stimulate LH release from pituitary fragments (n = 9, 7.8 +/- 12.3-36.2 +/- 21.6 ng/ml) confirming that the alpha(1)-adrenoreceptor agonist stimulated release of biologically active GnRH. In summary, GnRH release from the hypothalamus is under stimulatory noradrenergic control and this is potentiated in the presence of oestradiol.
The present study examines the involvement of GABA(A or B) receptors in gonadotrophin-releasing hormone (GnRH) release in vitro and determines whether oestradiol modulates gamma-aminobutyric acid (GABA)-GnRH interaction. Within 10 min after ewe killing, hypothalamic slices were dissected and placed in oxygenated Minimum Essential Media (MEM)-alpha at 4 degrees C; within 2 h, slices were singly perifused at 37 degrees C with oxygenated MEM-alpha (0.15 ml/min), with or without oestradiol (24 pg/ml). After 4 h equilibration, fractions were collected for 4 h interposed with a 10 min exposure to specific GABA(A or B) receptor ligands (0.1-10 mM). The GABA(A or B) agonists (muscimol or baclofen) did not greatly influence GnRH release. However, GnRH increased (p < 0.05) after exposure to 10 mM GABA(A or B) antagonists (bicuculline or CGP52432, respectively). The GABA(A) antagonist stimulated greater sustained GnRH release (p < 0.05) in the absence of oestradiol than in its presence. The bioactivity of the released GnRH was studied using a hypothalamus-pituitary sequential double-chamber perifusion. Only after exposure of hypothalamic slices to the GABA(A) antagonist, did the hypothalamic eluate stimulate luteinizing hormone release from pituitary fragments (p < 0.05) confirming that the GABA(A) antagonist stimulated release of biologically active GnRH. In summary, GnRH release from the hypothalamus is predominantly under GABA(A) receptor inhibitory control and this is attenuated in the presence of oestradiol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.