In optical chaos communications a message is masked in the noise-like broadband output of a chaotic transmitter laser, and message recovery is enabled through the synchronization of the transmitter and the (chaotic) receiver laser. Key issues are to identify the laser operating conditions which provide the highest quality synchronization conditions and those which provide optimized message extraction. In general such operating conditions are not coincident. In this paper numerical simulations are performed with the aim of identifying a regime of operation where the highest quality synchronization and optimizing message extraction efficiency are achieved simultaneously. Use of such an operating regime will facilitate practical deployment of optical chaos communications systems without the need for re-adjustment of laser operating conditions in the field.
Thermal effects and dynamical hysteresis in VCSELs under dc modulation have been experimentally studied. The results show that the VCSEL turn-on and turn-off currents can display both positive hysteresis and negative hysteresis, depending on the current modulation frequency and on the substrate temperature. Numerical simulations of semiconductor laser rate equations, extended to take into account thermal effects, show a good agreement with the observations.
The conductivity and permittivity of biological tissue are critical to estimating local radiofrequency (RF) power deposition (also known as specific absorption rate SAR) for Ultra High Field Magnetic Resonance Imaging (UH-MRI). These electrical properties may also have diagnostic value as malignant tissue types have been shown to have higher permittivity and conductivity than surrounding healthy tissue [1]. Recently a new SAR calculation method of using the transmit B 1 + map to obtain tissue electrical property has been proposed as a fast SAR calculation method, and has demonstrated great potential for practical applications. However the current numerical technique used in the B 1 + map based electrical property calculation is based on a traditional Finite-Difference algorithm, and therefore it requires high-resolution original B 1 + map to achieve accurate electrical property calculation. In this study, we have proposed the Spline interpolation of low resolution MRI B 1 + map at 1.5T. The proposed method is robust in approximating complex shapes in medical images through curve fitting and therefore could provide sufficiently accurate approximation of the high resolution B 1 + map through the low resolution raw data. This will prove to be useful in the fast real time estimation of local specific absorption rate without compromising the accuracy of SAR calculation. It is found that the Spline interpolation method helps in the reduction of MRI scan time and fast estimation of the SAR.
Thermal effects on the dynamical hysteresis in VCSEL turn-on and turn off has been studied experimentally and theoretically. Both normal hysteresis and negative hysteresis are observed in VCSEL turn-on and turn off.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.