Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15% or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.
Abstract.Stochastic models for the crystalline crust produce synthetic seismograms that compare well with recorded data for a variety of crustal ages and tectonic environments. In this paper, we explore the parameter space describing such stochastic models as a basis for formulating the inverse problem; that is, we wish to estimate the parameters which define a stochastic model from the recorded backscattered wave field. We base the estimation on approximate relations between the primary reflectivity series, which is the ideal wave field response of a medium, and various seismic gathers. A two-dimensional lateral correlation method is used to investigate the sensitivity of synthetic wave fields to horizontal characteristic length. A derived empirical relationship relates the scale length to the half width of the correlation coefficient. A horizontal wavenumber-time domain spectral analysis successfully estimates the horizontal characteristic length (a•) and the fractal dimension (D) of the stochastic medium from which the wave field was backscattered.
We present the use of a nonlinear optimization scheme called generalized simulated annealing to invert seismic reflection times for velocities, reflector depths, and lengths. A finite-difference solution of the eikonal equation computes reflection traveltimes through the velocity model and avoids ray tracing. We test the optimization scheme on synthetic models and compare it with results from a linearized inversion. The synthetic tests illustrate that, unlike linear inversion schemes, the results obtained by the optimization scheme are independent of the initial model. The annealing method has the ability to produce a suite of models that satisfy the data equally well. We make use of this property to determine the uncertainties associated with the model parameters obtained. Synthetic examples demonstrate that allowing the reflector length to vary, along with its position, helps the optimization process obtain a better solution. We put this to use in imaging the Garlock fault, whose geometry at depth is poorly known. We use reflection times picked from shot gathers recorded along COCORP Mojave Line 5 to invert for the Garlock fault and velocities within the Cantil Basin below Fremont Valley, California. The velocities within the basin obtained by our optimization scheme are consistent with earlier studies, though our results suggest that the basin might extend l-2 km further south. The reconstructed reflector seems to suggest shallowing of the dip of the Garlock fault at depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.