Data-driven quality evaluation in the stamping process of car body parts is quite promising because dependencies in the process have not yet been sufficiently researched. However, the application of data mining methods for the process in stamping plants would require a large number of sample data sets. Today, acquiring these data represents a major challenge, because the necessary data are inadequately measured, recorded or stored. Thus, the preconditions for the sample data acquisition must first be created before being able to investigate any correlations. In addition, the process conditions change over time due to wear mechanisms. Therefore, the results do not remain valid and a constant data acquisition is required. In this publication, the current situation in stamping plants regarding the process robustness will be first discussed and the need for data-driven methods will be shown. Subsequently, the state of technology regarding the possibility of collecting the sample data sets for quality analysis in producing car body parts will be researched. At the end of this work, an overview will be provided concerning how this data collection was implemented at BMW as well as what kind of potential can be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.