JOREK is a massively parallel fully implicit non-linear extended magneto-hydrodynamic (MHD) code for realistic tokamak X-point plasmas. It has become a widely used versatile simulation code for studying large-scale plasma instabilities and their control and is continuously developed in an international community with strong involvements in the European fusion research programme and ITER organization. This article gives a comprehensive overview of the physics models implemented, numerical methods applied for solving the equations and physics studies performed with the code. A dedicated section highlights some of the verification work done for the code. A hierarchy of different physics models is available including a free boundary and resistive wall extension and hybrid kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element grids in single and double X-point plasmas which can be extended to the true physical walls and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key results obtained with JOREK regarding plasma edge and SOL, are deep insights into the dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free regimes, detachment physics, the generation and transport of impurities during an ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the focus is on the dynamics of the thermal quench (TQ) and current quench triggered by massive gas injection and shattered pellet injection, runaway electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical displacement events. Also the seeding and suppression of tearing modes (TMs), the dynamics of naturally occurring TQs triggered by locked modes, and radiative collapses are being studied.
A fusion reactor divertor must withstand heat flux densities <10 MW m−2. Additionally, it may have to withstand millisecond pulses on the order of 0.5 to 30 MJ m−2 due to (mitigated) edge-localized modes (ELM) occurring with 30 to 60 Hz. We investigate if these requirements can be met by capillary porous system (CPS) liquid lithium divertors (LLD). 3D-printed tungsten CPS targets were exposed in the linear plasma device Magnum-PSI, to deuterium plasma discharges lasting 15 s, generating 1.5 to 16 MW m−2, and T e ∼ 1.5 eV. Additionally, ELM-like pulses were superimposed on top of the steady state for 3 s with a frequency of 2 and 100 Hz, power flux densities of 0.3 to 1 GW m−2, and T e up to ∼14 eV. All Li targets survived without damage. The surface temperature (T s) was locked at ∼850 °C, which was attributed to power dissipation via vapor shielding. Meanwhile, unfilled reference targets melted during the severest pulsed loading. A blue grayish layer of presumably LiD formed when T s < 500 °C, but disappeared when the locking temperature was reached. This implies that LiD formation can be avoided, but that it may require a surface temperature at which Li evaporation excessively contaminates the core plasma in a tokamak. During pulsed loading the plasma facing surface remained wetted in all conditions. Bolometry indicated that, only during pulses, there was a large increase in radiative power dissipation compared to targets without Li. A high speed camera with a Li-I filter showed that strong Li evaporation continued up to 5 ms after a pulse. Overall, the liquid-lithium-filled 3D-printed tungsten targets were found to be highly robust, and 3D-printing can be considered as a promising manufacturing technique for LLDs. Further research is needed particularly on the formation of LiD and the associated tritium retention, as well as the impact of enhanced evaporation during and after ELMs on the core plasma.
DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The prediction of power fluxes and plasma-wall interactions impacted by MHD processes during ITER operation [disruption, Edge Localized Modes (ELMs), 3D magnetic fields applied for ELM control, etc.] requires models that include an accurate description of the MHD processes themselves, as well as of the edge plasma and plasma-wall interaction processes. In this paper, we report progress on improving the edge plasma physics models in the nonlinear extended MHD code JOREK, which has capabilities to simulate the MHD response of the plasma to the applied external 3D fields, disruptions and ELMs. The extended MHD model includes E × B drifts, diamagnetic drifts, and neoclassical flows. These drifts can have large influences, on e.g., divertor asymmetries. Realistic divertor conditions are important for impurity sputtering, transport, and their effect on the plasma. In this work, we implemented kinetic and fluid neutral physics modules, investigated the influence of poloidal flows under divertor conditions in the ITER PFPO-1 (1.8T/5MA) H-mode plasma scenario, and compared the divertor plasma conditions and heat flux to the wall for both the fluid and kinetic neutral model (in JOREK) to the well-established 2D boundary plasma simulation code suite SOLPS-ITER. As an application of the newly developed model, we investigated time-dependent divertor solutions and the transition from attached to partially detached plasmas. We present the formation of a high-field-side high-density-region and how it is driven by poloidal E × B drifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.