The objective of this study was to establish a three-dimensional (3-D) in vitro model system of cardiac muscle for electrophysiological studies. Primary neonatal rat ventricular cells containing lower or higher fractions of cardiac myocytes were cultured on polymeric scaffolds in bioreactors to form regular or enriched cardiac muscle constructs, respectively. After 1 wk, all constructs contained a peripheral tissue-like region (50–70 μm thick) in which differentiated cardiac myocytes were organized in multiple layers in a 3-D configuration. Indexes of cell size (protein/DNA) and metabolic activity (tetrazolium conversion/DNA) were similar for constructs and neonatal rat ventricles. Electrophysiological studies conducted using a linear array of extracellular electrodes showed that the peripheral region of constructs exhibited relatively homogeneous electrical properties and sustained macroscopically continuous impulse propagation on a centimeter-size scale. Electrophysiological properties of enriched constructs were superior to those of regular constructs but inferior to those of native ventricles. These results demonstrate that 3-D cardiac muscle constructs can be engineered with cardiac-specific structural and electrophysiological properties and used for in vitro impulse propagation studies.
We have measured the relationship between tissue swelling stress and consolidation for bovine articular cartilage and corneal stroma in uniaxial confined compression as a function of bath ionic strength. Our experimental protocol and results clearly demonstrate that two concentration-dependent material properties are necessary to describe the chemical dependence of tissue swelling stress in uniaxial compression over the range of deformations and concentrations explored. A general electromechanochemical model for the swelling stress of charged connective tissues is developed. The model focuses on the role of charged matrix macromolecules in determining the mechanical behavior of the tissue. A constitutive relation for the swelling stress in uniaxial confined compression is formulated and the concentration dependence of the material properties of articular cartilage and corneal stroma is determined. The associated free swelling behavior of cartilage and cornea specimens is computed from these results and is found to compare favorably with data from the literature.
An electromechanical model for charged, hydrated tissues is developed to predict the kinetics of changes in swelling and isometric compressive stress induced by changes in bath salt concentration. The model focuses on ionic transport as the rate limiting step in chemically modulating electrical interactions between the charged macromolecules of the extracellular matrix. The swelling response to such changes in local interaction forces is determined by the relative rates of chemical diffusion and fluid redistribution in the tissue sample. We have tested the model by comparing the experimentally observed salt-induced stress relaxation response in bovine articular cartilage and corneal stroma to the response predicted by the model using constitutive relations for the concentration dependent material properties of the tissues reported in a related study. The qualitatively good agreement between our experimental measurements and the predictions of the model supports the physical basis of the model and demonstrates the model's ability to discriminate between the two soft connective tissues that were examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.