The cluster based analysis provides insight into session-to-session non-stationarity in EEG data. The results demonstrate the effectiveness of the proposed method in addressing non-stationarity in EEG data for the operation of a BCI.
The dependable operation of brain-computer interfaces (BCI) based on electro electroencephalogram (EEG) signals requires precise classification of multi-channel EEG signals. The design of EEG interpretation and classifiers for BCI are open research questions whose difficulty stems from the need to extract complex spatial and temporal patterns from noisy multidimensional time series obtained from EEG measurements. In this paper we attempt to classify EEG data used in the BCI competition by the combination of pattern classification methods. We use Common Spatial Pattern (CSP) to extract features. A Genetic Algorithm (GA) was applied first to evolve an artificial neural network (ANN) to find the optimum structure of ANN. A Particle Swarm Optimization (PSO) was also attempted to determine the optimal number of hidden neurons complementary to the GA approach. Then the GA was used to evolve the connection weights of the ANN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.