SUMMARYNitrogen fixing nodules are formed on the roots and stems of the tropical legume Sesbania rostrata by A orhi obium caulinodans as a result of crack entry invasion of emerging lateral roots. Advantage was taken of this invasion capability of A. caulinodans to determine whether inoculation of the non-legume wheat with A. caulinodans would result in the endophytic establishment of azorhizobia within wheat roots. Advantage was also taken of the oxygen tolerance of the nitrogenase of free-living azorhizobia to assess the extent to which the endophytic establishment of azorhizobia in wheat roots would provide a niche for nitrogen fixation of benefit to the plant. Wheat was inoculated with A. caulinodans and grown in pots under controlled conditions, without added growth regulators and without addition of fixed nitrogen. Microscopic examination of the short lateral roots of inoculated wheat showed invasion of azorhizobia between cells of the cortex, within the xylem and the root meristem. Acetylene reduction assays combined with analysis of tissue nitrogen levels indicated the likelihood that colonization led to nitrogenase activity. Inoculated wheat showed significant increases in dry weight and nitrogen content as compared with uninoculated controls. We discuss the extent to which this nitrogen fixation is likely to involve symbiotic nitrogen fixation, and we indicate the need for field trials to determine the extent to which inoculation of wheat with A. caulinodans will reduce the requirement for inputs of nitrogenous fertilizers.
Countries in the West Asia and North Africa (WANA) region are dependent on imports of wheat to meet their food security needs. Mechanized raised-bed wheat production is an effective means of increasing productivity and saving scarce water, but the technology needs substantial adaptation to local conditions. This paper estimates the economic benefits from a long-term adaptive research project designed to adapt and promote mechanical raised-bed wheat production in Egypt. The technology itself is associated with a 25% increase in productivity due to higher yields, 50% lower seed costs, a 25% reduction in water use, and lower labor costs. The mechanical raised-bed program is now a component of Egypt's national wheat campaign and it is estimated that by 2023 approximately 800,000 ha of wheat will be planted with the technology. This paper estimates that over a 15 year project horizon, the benefits will exceed US$ 4 billion, with most of the benefits accruing to more than one million Egyptian wheat producers. Other benefits include reduced wheat imports (by more than 50% by 2025), reduced dependence on international commodity markets and increased productivity on more than 200,000 ha of water-starved lands.
Pushing yield frontiers of cereals and legumes is becoming increasingly difficult, especially in drylands. This paper argues and provides empirical evidence that food loss and wastage constitute a sizeable proportion of the total wheat supply in Egypt. By following the life cycle of food and using standard measurement protocols, we estimated the levels of food loss and wastage along the wheat value chain in Egypt and their socioeconomic, biophysical, and environmental implications. About 4.4 million tons (20.62% of total wheat supply from domestic production and imports in 2017/2018) is estimated to be lost or wasted in Egypt which is also associated with the wastage of about 4.79 billion m3 of water, and 74.72 million GJ of energy. This implies that if Egypt manages to eliminate, or considerably reduce, wheat-related losses and wastage, it will save enough food to feed 21 million more people from domestic production and hence reduce wheat imports by 37%, save 1.1 billion USD of much-needed foreign exchange, and reduce emissions of at least 260.84 million kg carbon dioxide-equivalent and 8.5 million kg of methane. Therefore, investment in reducing food loss and wastage can be an effective strategy to complement ongoing efforts to enhance food security through productivity enhancement in Egypt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.