Abstract-In this paper, a robot learning approach is proposed which integrates Visuospatial Skill Learning, Imitation Learning, and conventional planning methods. In our approach, the sensorimotor skills (i.e., actions) are learned through a learning from demonstration strategy. The sequence of performed actions is learned through demonstrations using Visuospatial Skill Learning. A standard action-level planner is used to represent a symbolic description of the skill, which allows the system to represent the skill in a discrete, symbolic form. The Visuospatial Skill Learning module identifies the underlying constraints of the task and extracts symbolic predicates (i.e., action preconditions and effects), thereby updating the planner representation while the skills are being learned. Therefore the planner maintains a generalized representation of each skill as a reusable action, which can be planned and performed independently during the learning phase. Preliminary experimental results on the iCub robot are presented.
As the autonomy and capabilities of robotic systems increase, they are expected to play the role of teammates rather than tools and interact with human collaborators in a more realistic manner, creating a more human-like relationship. Given the impact of trust observed in human-robot interaction (HRI), appropriate trust in robotic collaborators is one of the leading factors influencing the performance of human-robot interaction. Team performance can be diminished if people do not trust robots appropriately by disusing or misusing them based on limited experience. Therefore, trust in HRI needs to be calibrated properly, rather than maximized, to let the formation of an appropriate level of trust in human collaborators. For trust calibration in HRI, trust needs to be modeled first. There are many reviews on factors affecting trust in HRI [22], however, as there are no reviews concentrated on different trust models, in this paper, we review different techniques and methods for trust modeling in HRI. We also present a list of potential directions for further research and some challenges that need to be addressed in future work on human-robot trust modeling.
Abstract-We present a novel robot learning approach based on visual perception that allows a robot to acquire new skills by observing a demonstration from a tutor. Unlike most existing learning from demonstration approaches, where the focus is placed on the trajectories, in our approach the focus is on achieving a desired goal configuration of objects relative to one another. Our approach is based on visual perception which captures the object's context for each demonstrated action. This context is the basis of the visuospatial representation and encodes implicitly the relative positioning of the object with respect to multiple other objects simultaneously. The proposed approach is capable of learning and generalizing multi-operation skills from a single demonstration, while requiring minimum a priori knowledge about the environment. The learned skills comprise a sequence of operations that aim to achieve the desired goal configuration using the given objects. We illustrate the capabilities of our approach using three object reconfiguration tasks with a Barrett WAM robot.
Abstract-This paper investigates learning approaches for discovering fault-tolerant control policies to overcome thruster failures in Autonomous Underwater Vehicles (AUV). The proposed approach is a model-based direct policy search that learns on an on-board simulated model of the vehicle. When a fault is detected and isolated the model of the AUV is reconfigured according to the new condition. To discover a set of optimal solutions a multi-objective reinforcement learning approach is employed which can deal with multiple conflicting objectives. Each optimal solution can be used to generate a trajectory that is able to navigate the AUV towards a specified target while satisfying multiple objectives. The discovered policies are executed on the robot in a closed-loop using AUV's state feedback. Unlike most existing methods which disregard the faulty thruster, our approach can also deal with partially broken thrusters to increase the persistent autonomy of the AUV. In addition, the proposed approach is applicable when the AUV either becomes underactuated or remains redundant in the presence of a fault. We validate the proposed approach on the model of the Girona500 AUV.
Abstract-We investigate methods to improve fault-tolerance of Autonomous Underwater Vehicles (AUVs) to increase their reliability and persistent autonomy. We propose a learningbased approach that is able to discover new control policies to overcome thruster failures as they happen. The proposed approach is a model-based direct policy search that learns on an on-board simulated model of the AUV. The model is adapted to a new condition when a fault is detected and isolated. Since the approach generates an optimal trajectory, the learned fault-tolerant policy is able to navigate the AUV towards a specified target with minimum cost. Finally, the learned policy is executed on the real robot in a closed-loop using the state feedback of the AUV. Unlike most existing methods which rely on the redundancy of thrusters, our approach is also applicable when the AUV becomes under-actuated in the presence of a fault. To validate the feasibility and efficiency of the presented approach, we evaluate it with three learning algorithms and three policy representations with increasing complexity. The proposed method is tested on a real AUV, Girona500.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.