Current monolithic quantum computer architectures have limited scalability. One promising approach for scaling them up is to use a modular or multi-core architecture, in which different quantum processors (cores) are connected via quantum and classical links. This new architectural design poses new challenges such as the expensive inter-core communication. To reduce these movements when executing a quantum algorithm, an efficient mapping technique is required. In this paper, a detailed critical discussion of the quantum circuit mapping problem for multi-core quantum computing architectures is provided. In addition, we further explore the performance of a mapping method, which is formulated as a partitioning over time graph problem, by performing an architectural scalability analysis.
SummaryA case of a 49-year-old man suffering from bilateral adrenocortical carcinoma with local and secondary rapid progression is reported. The results of adrenocortical scintigraphy (NP 59) and histological findings allowed the diagnosis. This case report and a literature review showed the importance of using adrenocortical scintigraphy as a complementary imaging procedure of CT or MR images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.