Plasma processes are usually worked out in a small-scale environment (electrode area maximum 121 cm2, rf- and VHF- excitation frequencies). In order to meet the requirements of large area device applications they have to be upscaled. The investigations of glow discharge systems for different PECVD reactors (parallel plate- and coaxial electrodes) have shown, that the reactor design (power supply, line connection) sharply influences the large area deposition process. The voltage distribution on the driven electrode especially determines the uniformity of the deposited layer thickness. Possibilities which influence the voltage distribution on large areas will be discussed. The results of large area electrode description as an electrical line will be discussed in comparison with different reactor configurations and the optimization of the behavior of the deposition process. The experimental results of a coaxial reactor (electrode area 5000 cm2, substrate length 120 cm) show that a homogenous deposition of amorphous silicon (layer uniformity of thickness over the length better ± 7 %) by connecting the driven electrode with additional electrical devices is possible.
The production of amorphous silicon devices usually requires large area, high-deposition-rate plasma reactors. Non-uniformity of the film thickness at high power and deposition rate is found to be an important factor for large area deposition.Increasing the radio frequency from the conventional 13.56 MHz up to VHF has demonstrated advantages for the deposition of a-Si:H films, including higher deposition rates and lower particle generation. The use of VHF for large area deposition leads to the generation of standing waves and evanescent waveguide modes at the electrode surface and on the power feeding lines. Thereby increasing the non-uniformity of the film thickness. The uniformity of the film thickness for an excitation frequency strongly depends on the deposition parameters e.g. pressure, input power, silane flow and the value of load impedances. With increasing exciting frequencies the range of deposition parameters for obtaining uniform films narrows.Subsequently it is shown that for a large-area plasma-box reactor (500 × 600 mm2 plate size) with a double-sided RF electrode, the non-uniformity of the film decreases due to a homoge-neization of the electrode voltage distribution by using multiple power supplies and load impedances on the end of the RF electrode. The uniformity errors decrease from ±20% to ±2.4% (27.12MHz) and from ±40% to ±5.9% (54.24MHz). Experimental results of the film uniformity will be discussed in dependence on excitation frequencies and the deposition parameters.
The arrival of high-mobility
two-dimensional materials
like graphene
leads to the renaissance of former vertical semiconductor–metal–semiconductor
(SMS) hot electron transistors. Because of the monolayer thickness
of graphene, improved SMS transistors with a semimetallic graphene-base
electrode are now feasible for high-frequency applications. In this
study we report about a device that consists of amorphous silicon,
graphene, and crystalline silicon. For the first time, this device
is fabricated by a four-mask lithography process which leads to significant
improvements in the device performance. A strongly increased common-emitter
current gain of 2% could be achieved while the on–off ratio
improved to 1.6 × 105, which is already higher than
predicted theoretically. This could be mainly attributed to better
interface characteristics and decreased lateral dimensions of the
devices. A cutoff frequency of approximately 26 MHz could be forecasted
based on the DC measurements of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.