The oxygen reduction activity and methanol tolerance of a range of transition metal sulfide electrocatalysts have been evaluated in half-cell experiments and in a liquid-feed solid polymer electrolyte direct methanol fuel cell. These catalysts were prepared in high surface area form by direct synthesis onto various surface-functionalized carbon blacks. Of the materials tested, mixed-metal catalysts based on ReRuS and MoRuS were observed to give the best oxygen reduction activities. In addition, significant increases in performance were observed when employing sulfur-functionalized carbon black, which were attributed to the preferential deposition of active Ru sites in the catalyst-preparation process.Although the intrinsic activity of the best material tested, namely, Mo2Ru5S5 on sulfur-treated XC-72, was lower than Pt (by Ca. 155 mV throughout the entire polarization curve), its activity relative to Pt increased significantly in methanolcontaminated electrolytes. This was due to methanol oxidation side reactions reducing the net activity of the Pt, especially at low overpotentials.
X-ray absorption spectroscopy was used to identify specific types of nitrogen and sulfur-based carbon functionality present in the carbon black supports of fuel cell anodes and cathodes. The effects of these functional groups on the electrocatalytic performance of small platinum particles, dispersed on the carbon, during methanol oxidation and oxygen reduction were assessed. Electrodes functionalized with nitrogen had enhanced catalytic activities toward oxygen reduction and methanol oxidation relative to untreated electrodes. Although electrodes with sulfur functionality had higher oxygen reduction activities than untreated carbons, the activity of these electrodes toward methanol oxidation was found to be lower than electrodes manufactured from untreated carbon. It was found that carbon supports functionalized with both nitrogen and sulfur initiated the formation of Pt particles smaller in size than those observed on untreated carbon supports. ABSTRACT X-ray absorption spectroscopy was used to identify specific types of nitrogen and sulfur-based carbon functionality present in the carbon black supports of fuel cell anodes and cathodes. The effects of these functional groups on the electrocatalytic performance of small platinum particles, dispersed on the carbon, during methanol oxidation and oxygen reduction were assessed. Electrodes functionalized with nitrogen had enhanced catalytic activities toward oxygen reduction and methanol oxidation relative to untreated electrodes. Although electrodes with sulfur functionality had higher oxygen reduction activities than untreated carbons, the activity of these electrodes toward methanol oxidation was found to be lower than electrodes manufactured from untreated carbon. It was found that carbon supports functionalized with both nitrogen and sulfur initiated the formation of Pt particles smaller in size than those observed on untreated carbon supports.
The effect of carbon functionality on the electrocatalytic performance of carbon black-supported, Pt..based, direct methanol fuel cell cathodes was investigated. Polarization data show that cathodes with nitrogen and sulfur functionality have enhanced catalytic activity toward oxygen reduction. Transmission electron microscopy results indicate that this behavior may be ascribed to a platinum particle size effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.