The red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), is an economically important pest of stored products. As possible alternative to conventional insecticides for its management, plant essential oils have gained interest owing to their effectiveness and eco-friendly features. However, they also show some drawbacks, such as low stability, poor water solubility and diffusion, and limited persistence in the environment. A good strategy to overcome these disadvantages is represented by green nanotechnologies. Herein, we developed a nanoemulsion based on the essential oil from Pimpinella anisum L. (Apiaceae) containing 81.2% of (E)-anethole and evaluated its toxicity on T. castaneum adults and F progeny, as well as its morphological and histological impact. The aniseed oil nanoemulsion was characterized by the formation of a semi-solid interphase between oil and water; mean drop size was 198.9 nm, PDI was 0.303, zeta potential was - 25.4 ± 4.47 mV, and conductivity was 0.029 mS/cm. The nanoemulsion showed toxicity on T. castaneum (LC = 9.3% v/v), with a significant impact on its progeny. Morphological and histological damages triggered by feeding and exposure to the aniseed nanoemulsion were analyzed by scanning electron microscopy (SEM) and light microscopy. Overall, our findings showed that the development of nanoemulsions allows to improve the stability of P. anisum essential oil enhancing its efficacy against stored grain pests and contributing to reduce the use of harmful synthetic insecticides.
The drugstore beetle, Stegobium paniceum (L.) (Coleoptera: Anobiidae), is a pest of stored medicinal and aromatic plants. Generally, mortality of each stage increased with an increase of temperature and exposure time. Heat tolerance for different stages from highest to lowest was young larvae, old larvae, eggs, adult, and pupae. The mortality after 7 h at 42 degrees C for young larvae, old larvae, eggs, adults, and pupae, respectively, was 16 +/- 5, 31 +/- 6, 48 +/- 3, 63 +/- 8, and 86 +/- 2% (mean +/- SEM). Similar trends for stage specific mortality were seen with the lethal time for 90% mortality (LT90) at 42 degrees C; 773, 144, 12, and 11 h for old larvae, eggs, adults, and pupa respectively. Mortality was too low with young larvae to estimate LT90. The LT90 for young larvae at 42, 45, 50, 55, and 60 degrees C was 25, 20, 3.9, 0.18, and 0.08 h, respectively. The cold tolerance of different stages at 0 degree C from highest to lowest was adults, old larvae, young larvae, pupae, and eggs. The LT90 at 0 degrees C was 298, 153, 151, 89, and 53 h, respectively. The LT90 for adults at 5, -5, -10, and -15 degrees C was 792, 58, 2, and 0.8 h, respectively. The supercooling point of adults was -15.2 +/- 2 degrees C; young larvae, -9.0 +/- 0.8 degrees C; old larvae, -6.5 +/- 0.5 degrees C; and pupae, -4.0 +/- 1.4 degrees C. Heat treatments that control young larvae should control all other stages of S. paniceum. Cold treatments that control adults should control all other stages of S. paniceum. Dried plants stored at 5 degrees C for 45 d or 42 degrees C for 30 h and then kept below 18 degrees C throughout the rest of the year, should remain pest-free without any chemical control.
Laboratory experiments were carried out to study the influence of temperature and age of Nezara viridula eggs on the rate of parasitism by Trissolcus megallocephalus, the rate of emerged parasitoids, the duration of developmental stages, the adult longevity and the daily rate of oviposition. The results indicated that the highest rate of parasitism 55.4 ± 2.37/female (92.33%) and the highest number of emerged parasitoids 55.10 ± 2.60 individuals/female (91.83%) were obtained when the females were reared at a constant temperature of 25°C. At 30°C, egg‐larval stage, pupal stage and total developmental stages showed the shortest developmental time. Results showed also a negative response between adult parasitoids longevity and temperature. Females deposited the highest number of eggs during the first day at the highest temperature of 30°C, while the females which were reared at 25°C, 20°C and 21–36°C fluctuating temperature deposited the highest number of eggs during the second day. The results also indicated that the parasitoid females attacked host eggs at all developmental stages before hatching. The rate of parasitism and the number of emerged parasitoids were relatively high except for host eggs more than 3 days old. The shortest duration of developmental stages (14.2 ± 2.86 days) were obtained at host eggs of two days old, and increased to (17.8 ± 2.39 days) at 5 days old with a significant difference (P < 0.05). No significant differences were obtained between the adult longevity and the different ages of host eggs.
Previous work revealed that Harmonia axyridisPallas (Coleoptera: Coccinellidae) in Beijing, China, were capable of regenerating a forelimb amputated in the fourth instar; 75% of surviving individuals fully regenerated the limb during pupation. In this study, we tested a population of H. axyridis invasive in North America and found that virtually 100% of beetles surviving the operation successfully regenerated the limb. Ablated/regenerated beetles spent longer in pupation, and emerging females were smaller than controls. However, reproductive success was unaffected in all pairwise crosses of control/regenerated adults; there were no differences in pre‐oviposition period, the time required to produce 10 clutches, 10‐day fecundity, or the fertility of eggs, whereas ablated/regenerated parents paid a developmental cost, their progeny obtained benefits. Offspring of crosses that included a regenerated parent tended to have faster larval development than the control cross, although not all were significantly different from controls. However, when either or both parents were ablated and regenerated, their daughters were heavier than controls at emergence. Limb regeneration during pupation appears to activate a physiological cascade which increases the magnitude of beneficial parental effects normally conferred to progeny, possibly via pleiotropic effects. The invasive North American H. axyridis population appears to have higher regeneration capacity than the Chinese population tested previously, although how regeneration capacity might be associated with invasiveness remains unclear. Limb regeneration ability may be a side effect of selection on other traits that confer high fitness under either natural or sexual selection, as it seems unlikely to confer fitness benefits directly in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.