The present study demonstrated the antibacterial effect of photocatalytic oxidation in indoor air using titanium dioxide as the catalyst. Through a series of experiments, it was determined that titanium dioxide did enhance the inactivation rate of the microorganisms under certain conditions. In these experiments the air velocity, relative humidity, and UV (350 nm) intensity were varied. It was found that higher velocities retarded the destruction rate due to the low retention time in the reactor. TiO2 also did not accelerate the reaction at low humidities (30 percent). At a relative humidity of 50 percent, there was complete inactivation of the organisms, but at higher humidities (85 percent), 10 percent of the organisms were still viable. The experiments showed that at higher UV intensities, most of the inactivation was done by the UV photons. However, the photons were not able to completely inactivate the microorganisms. In the photocatalysis experiments there was complete inactivation of the bacteria.
TiO(2) photocatalysis with ultraviolet (UV-A) light has proven to be a highly effective process for complete inactivation of airborne microbes. However, the overall efficiency of the technology needs to be improved to make it more attractive as a defense against bio-terrorism. The present research investigates the enhancement in the rate of destruction of bacterial spores on metal (aluminum) and fabric (polyester) substrates with metal (silver)-doped titanium dioxide and compares it to conventional photocatalysis (TiO(2) P25/+UV-A) and UV-A photolysis. Bacillus cereus bacterial spores were used as an index to demonstrate the enhanced disinfection efficiency. The results indicate complete inactivation of B. cereus spores with the enhanced photocatalyst. The enhanced spore destruction rate may be attributed to the highly oxidizing radicals generated by the doped TiO(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.