Domestic houseflies (Musca domestica Linnaeaus) were examined for their ability to harbor and transmit turkey coronavirus (TCV). Laboratory-reared flies were experimentally exposed to TCV by allowing flies to imbibe an inoculum comprised of turkey embryo-propagated virus (NC95 strain). TCV was detected in dissected crops from exposed flies for up to 9 hr postexposure; no virus was detected in crops of sham-exposed flies. TCV was not detected in dissected intestinal tissues collected from exposed or sham-exposed flies at any time postexposure. The potential of the housefly to directly transmit TCV to live turkey poults was examined by placing 7-day-old turkey poults in contact with TCV-exposed houseflies 3 hr after flies consumed TCV inoculum. TCV infection was detected in turkeys placed in contact with TCV-exposed flies at densities as low as one fly/bird (TCV antigens detected at 3 days post fly contact in tissues of 3/12 turkeys); however, increased rates of infection were observed with higher fly densities (TCV antigens detected in 9/12 turkeys after contact with 10 flies/bird). This study demonstrates the potential of the housefly to serve as a mechanical vector of TCV.
The house fly, Musca domestica L. (Diptera: Muscidae), is a disease vector of mechanically transmitted pathogens including bacteria, viruses, and protozoans. Opportunities for pathogen transmission can increase as fly longevity increases. Dietary preferences play an important role in insect longevity; therefore, we investigated house fly preferences, sucrose availability, and caloric constraints on house fly longevity. Experimental goals were: 1) to test the effects of calorie restriction on survival of house flies by manipulating concentrations of erythritol (low caloric content) and sucrose (high caloric content), and comparing commercial sweeteners of differing calorie content, 2) to identify house fly preferences for either erythritol or sucrose, and 3) to evaluate the insecticidal activity or toxicity of erythritol on house flies. Our data show that house flies may prefer high calorie options when given a choice and that house fly longevity likely increases as calorie content increases. Additionally, no significant differences in longevity were observed between the water only control (zero calories) and erythritol treatments. This suggests that decreased survival rates and death could be the result of starvation rather than insecticidal activity. This research furthers our understanding of house fly survival and sugar-feeding behavior.
The vectoR potential of adult house flies. Musca domestica L., for Yersinia pseudotuberculosis (Pfeiffer), a pathogen of domestic animals and humans, was investigated. Adult flies were allowed to feed on trypticase soy broth (TSB) containing Y. pseudotuberculosis for 6 h and then transferred to sterile containers with sterile TSB as a source of water and nutrients. At 6-h intervals, all flies were transferred to sterile containers with sterile TSB and 10 randomly selected flies were examined for the pathogen. Yersinia pseudotuberculosis did not establish a permanent population in the house fly colony; however, viable cells were detected from the digestive tract of flies for up to 36 h after the initial exposure, and flies contaminated their environment (sterile TSB) for up to 30 h after the exposure. These results demonstrated that house flies can carry Y. psedotuberculosis for a considerable period and therefore must be considered as a potential mechanical vector of pseudotuberculosis infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.