The pump-probe reflectivity (PPR) technique is a quick way to characterize the short carrier lifetime in materials which may be potentially good terahertz (THz) emitters or detectors. Here, we study the PPR signal in semiconductors theoretically in the frequency domain (at various energies above and below the band gap) as a function of pump-probe delay. We consider two conditions of carrier relaxation. In one, the carriers are assumed to form a hot, thermalized energy distribution during excitation itself and then to cool via phonon emission, as is expected in the case of high density excitation in GaAs. In the other case, the carriers essentially remain in a nonequilibrium, nonthermal state even as they relax. This can happen when the carrier-longitudinal optical phonon interaction is stronger than carrier–carrier scattering, as is likely in GaN even at moderately high densities. In addition, effects of carrier trapping and recombination determining the carrier lifetime are included. The calculation takes into account the effect of Sommerfeld factor and pump induced modulation of the probe reflectivity due to band filling (BF), band gap renormalization (BGR), and free carrier absorption. Signatures of carrier cooling and decay can be identified from the delay dependence of the PPR signal at high enough carrier densities (⩾1×1018 cm−3) when the carrier cooling rate is comparable with the decay rate. In that case, carrier cooling shows up in the reflectivity signal as a rise in the time evolution whereas the signal decay is mainly related to carrier decay, albeit in a nonexponential way. However, at lower densities, the signal evolution with delay is rather complex. There, it is not possible to identify the signature of carrier cooling and the decay of the signal is not governed simply by the carrier decay rate. We point out that in general, the magnitude and signature of the PPR signal at different delays are governed by an interplay between the BGR and BF effects. The delay dependence of the signal is a very sensitive function of the form of BGR used to describe its density dependence at low densities. We find that the delay and frequency dependence of the PPR signal is different for a thermalized, cooling distribution from that for the relaxing, nonthermalized distribution. Thus, PPR experiments may be able to distinguish rapid carrier relaxation via a cascade emission of longitudinal optical phonons due to stronger Fröhlich coupling in GaN from cooling of hot, thermalized carriers in GaAs.
Subpicosecond electron lifetimes in low-temperature-grown GaAs are unambiguously demonstrated via far infrared terahertz spectroscopy. A systematic study of low-temperature-grown GaAs, as-grown and annealed, reveal carrier lifetimes to be directly related to the excess arsenic incorporation and anneal conditions. Contrary to previous observations, electron lifetimes of 600 fs (200 fs) are found in 0.25% (0.5%) excess arsenic GaAs. We attribute the observed differences to the far infrared interaction and the use of dilute photoexcitation densities which eliminate both band-edge resonance and high carrier densities effects. A simple model is developed to determine the relative electron mobility and to interpret the results. Additionally, time resolved differential spectroscopy reveals Drude-like behavior of the free carrier conductivity within 1 ps of excitation.
Effects of the tensile and compressive epitaxial strain and the crystallographic orientations on the structural and magnetic properties of (Bi0.9La0.1)2FeCrO6 (BLFCO) films were studied. The BLFCO (001) films (30 nm and 70 nm) were deposited on various single crystal substrates having lattice mismatch with the film in the range of −4.16% to +7.2%. We find that a pronounced ferromagnetic order manifests in the coherently strained films compared to that in the partially strained films. The saturation magnetic moment exhibits dissimilar effects on the type of the lattice mismatch: the coherent tensile strain is less favorable than the coherent compressive strain for the magnetic order in these films. We further establish that the ferromagnetic order exhibits maximum magnetic moment for (111)-oriented and minimum for (110)-oriented coherently strained BLFCO epitaxial films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.