Minimally invasive procedures, such as fine needle aspiration and core needle biopsy, are commonly used for the diagnosis in solid organ malignancies. In the era of targeted therapy, it is crucial for molecular testing to be performed on these limited volume specimens. Although several recent studies have demonstrated the utility of small biopsy specimens for molecular testing, there remains debate as to whether core needle biopsy specimens are more reliable than fine needle aspiration for molecular studies. In this study, we reviewed concurrently acquired fine needle aspiration and core needle biopsy samples (n=24), and compared overall cellularity, tumor fraction, and the results of next-generation sequencing. All somatic mutations detected in core needle biopsy samples were also detected in fine needle aspiration samples. The estimated tumor fraction was significantly higher in fine needle aspiration smears than core needle biopsy samples (P=0.003), whereas the overall DNA yield from smears was significantly lower than that obtained from the core needle biopsy specimens (P=0.01). The normalized average amplicon coverage for the genes analyzed was significantly higher in cytology smears than paired core needle biopsy samples, with lower numbers of failed amplicons and higher overall mutation allelic frequencies seen in the former. We further evaluated 100 malignant fine needle aspiration and core needle biopsy samples, acquired concurrently, for overall cellularity and tumor fraction. Overall cellularity and tumor fraction of fine needle aspiration samples was significantly higher than concurrently acquired core needle biopsy samples (P<0.001). In conclusion, we show that fine needle aspiration samples frequently provide better cellularity, higher tumor fraction, and superior sequencing metrics than concurrently acquired core needle biopsy samples. Cytologic specimens, therefore, should be better integrated into routine molecular diagnostics workflow to maximize limited tissues for clinically relevant genomic testing.
Minimally invasive techniques to occlude flow within blood vessels, initially pioneered in the 1970s with autologous materials and subsequently advanced with increasingly sophisticated engineered biomaterials, are routinely performed for a variety of medical conditions. Contemporary interventional radiologists have at their disposal a wide armamentarium of occlusive agents to treat a range of disease processes through a small incision in the skin. In this review, we provide a historical perspective on endovascular embolization tools, summarize the current state-of-the-art, and highlight burgeoning technologies that promise to advance the field in the near future.
Gene therapy development has been limited by our inability to target multifocal cancer with systemic delivery. We developed a systemically administered, tumor-targeted liposomal nanodelivery complex (SGT-94) carrying a plasmid encoding RB94, a truncated form of the RB gene. In preclinical studies, RB94 showed marked cytotoxicity against tumor but not normal cells. SGT-94 was administered intravenously in a first-in-man study in metastatic genitourinary cancer. Minimal side effects were observed; dose-limiting toxicity (DLT) has not been reached in 11 evaluable patients. There was evidence of clinical activity at the 2.4 mg dose with one complete remission (CR) and one partial remission (PR). The patient in CR was retreated upon progression and had a second PR. Furthermore, there was tumor-specific targeting of the SGT-94 complex. One patient had wedge resections of two lung metastases which demonstrated RB94 expression at the DNA level by polymerase chain reaction (PCR) and at the protein level by Western blotting, with no RB94 present in normal contiguous lung. In conclusion, systemically delivered SGT-94 showed evidence of selective tumor targeting and was well tolerated with evidence of clinical activity. Additional studies are warranted to explore the activity of this drug as a single agent and in combination therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.