Background and purpose. Accurate volume delineation plays an essential role in radiotherapy. Contouring is a potential source of uncertainties in radiotherapy treatment planning that could affect treatment outcomes. Therefore, reducing the degree of contouring uncertainties is crucial. The role of utilized imaging modality in the organ delineation uncertainties has been investigated. This systematic review explores the influential factors on inter-and intra-observer uncertainties of target volume and organs at risk (OARs) delineation focusing on the used imaging modality for these uncertainties reduction and the reported subsequent histopathology and follow-up assessment. Methods and materials. An inclusive search strategy has been conducted to query the available online databases (Scopus, Google Scholar, PubMed, and Medline). 'Organ at risk', 'target', 'delineation', 'uncertainties', 'radiotherapy' and their relevant terms were utilized using every database searching syntax. Final article extraction was performed following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Included studies were limited to the ones published in English between 1995 and 2020 and that just deal with computed tomography (CT) and magnetic resonance imaging (MRI) modalities. Results. A total of 923 studies were screened and 78 were included of which 31 related to the prostate 20 to the breast, 18 to the head and neck, and 9 to the brain tumor site. 98% of the extracted studies performed volumetric analysis. Only 24% of the publications reported the dose deviations resulted from variation in volume delineation Also, heterogeneity in studied populations and reported geometric and volumetric parameters were identified such that quantitative synthesis was not appropriate. Conclusion. This review highlightes the inter-and intra-observer variations that could lead to contouring uncertainties and impede tumor control in radiotherapy. For improving volume delineation and reducing inter-observer variability, the implementation of well structured training programs, homogeneity in following consensus and guidelines, reliable ground truth selection, and proper imaging modality utilization could be clinically beneficial.
In recent years, a new definition of fractional derivative which has a nonlocal and non-singular kernel has been proposed by Atangana and Baleanu. This new definition is called the Atangana-Baleanu derivative. In this paper, we present a new technique to obtain the numerical solution of advection-diffusion equation containing Atangana-Baleanu derivative. For this purpose, we use the operational matrix of fractional integral based on Genocchi polynomials. An error bound is given for the approximation of a bivariate function using Genocchi polynomials. Finally, some examples are given to illustrate the applicability and efficiency of the proposed method.
Purpose
Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra- and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmentation of clinical target volume (CTV) in glioblastoma patients.
Material and methods
In this study, the modified Segmentation-Net (SegNet) model with deep supervision and residual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume (GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (
n
= 37) to perform the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was evaluated on an independent clinical test dataset (
n
= 15) using the Dice Similarity Coefficient (DSC) and Hausdorff distance. The impact of auto-segmented CTV definition on dosimetry was also analysed.
Results
The proposed model achieved the segmentation results with a DSC of 89.60 ± 3.56% and Hausdorff distance of 1.49 ± 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between manually and automatically planned doses.
Conclusions
The results of our study suggest that our CNN-based auto-contouring system can be used for segmentation of CTVs to facilitate the brain tumour radiotherapy workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.