We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world's highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra.
A proof-of-principle experiment demonstrates the generation of radiation from the Cherenkov wake excited by an ultrashort- and ultrahigh-power pulse laser in a perpendicularly magnetized plasma. The frequency of the radiation is in the millimeter range (up to 200 GHz). The intensity of the radiation is proportional to the magnetic field intensity as expected by theory. Polarization of the emitted radiation is also detected. The difference in the frequency of the emitted radiation between these experiments and previous theory can be explained by the electrons' oscillation in the electric field of a narrow column of ions in the focal region.
Thermal transport measurements have been made on the Fe-based superconductor Lu2Fe3Si5 (T(c) ∼ 6 K) down to a very low temperature T(c)/120. The field and temperature dependences of the thermal conductivity confirm the multigap superconductivity with fully opened gaps on the whole Fermi surfaces. In comparison to MgB2, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat conduction in the mixed state. The results can be interpreted as a consequence of the unequal weight of the Fe 3d-electron character among the distinct bands.
A computational method for the simulation of particulate flows that can efficiently treat the particle-fluid boundary in systems containing many particles was developed based on the smoothed-profile lattice Boltzmann method (SPLBM). In our proposed method, which we call the improved SPLBM (iSPLBM), for an accurate and stable simulation of particulate flows, the hydrodynamic force on a moving solid particle is exactly formulated with consideration of the effect of internal fluid mass. To validate the accuracy and stability of iSPLBM, we conducted numerical simulations of several particulate flow systems and compared our results with those of other simulations and some experiments. In addition, we performed simulations on flotation of many lightweight particles with a wide range of particle size distribution, the results of which demonstrated the effectiveness of iSPLBM. Our proposed model is a promising method to accurately and stably simulate extensive particulate flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.