We describe a template-free technique for arranging colloidal particles into a stripe pattern on a large scale. A simple liquid-level manipulation system was incorporated into the vertical-deposition convective self-assembly (CSA) technique. By periodically pumping a colloidal dispersion out of or into a reservoir to manipulate the liquid level, we successfully fabricated stripe patterns with various periodicities (i.e., line widths and spacings) that are unachievable with the normal CSA technique. We developed a simple model to predict the periodicity of the resultant colloidal stripes that enables the tailored fabrication of colloidal stripes with the desirable periodicity for a practical application. This technique has the advantages of versatility and scalability. By combining this technique with the two-step CSA technique (Mino et al., Langmuir2011, 27(9), 5290-5295), we fabricated a large-sized colloidal grid network pattern of silver nanoparticles.
In this paper, we investigated the demulsification behavior of oil-in-water (O/W) emulsions during membrane permeation in the oil-water separation process using a numerical simulation approach. To accurately deal with the large deformation of the oil-water interface by coalescence and wetting, and to estimate the volume of the coalesced oil droplet, the coupled level set and volume-of-fluid method was used as the interface capturing method. We applied the simulation model to the permeation of O/W emulsions through a membrane pore, and then investigated the effects of the wettability of the membrane surface, filtration flux, and pore size on the demulsification efficiency. The results showed that oil droplets were likely to coalesce on the outlet membrane surface. High wettability on the membrane surface and low fluid velocity inside the pore increased the demulsification efficiency. This is the first work to numerically simulate the demulsification behavior of emulsions through membranes in the oil-water separation process.
Cluster arrays composed of metal nanoparticles are promising for application in sensing devices because of their interesting surface plasmon characteristics. Herein, we report the spontaneous formation of cluster arrays of gold colloids on flat substrates by vertical-deposition convective self-assembly. In this technique, under controlled temperature, a hydrophilic substrate is vertically immersed in a colloid suspension. Cluster arrays form when the particle concentration is extremely low (in the order of 10(-6)-10(-8) v/v). These arrays are arranged in a hierarchically ordered structure, where the particles form clusters that are deposited at a certain separation distance from each other, to form "dotted" lines that are in turn aligned with a constant spacing. The size of the cluster can be controlled by varying the particle concentration and temperature while an equal separation distance is maintained between the lines formed by the clusters. Our technique thus demonstrates a one-step, template-free fabrication method for cluster arrays. In addition, through the direct observation of the assembly process, the spacing between the dotted lines is found to result from the "stick-and-slip" behavior of the meniscus tip, which is entirely different from the formation processes observed for the striped patterns, which we reported previously at higher particle concentrations. The difference in the meniscus behavior possibly comes from the difference in colloidal morphology at the meniscus tip. These results demonstrate the self-regulating characteristics of the convective self-assembly process to produce colloidal patterns, whose structure depends on particle concentration and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.