This paper considers the application of method of percentile matching available in statistical theory of estimation for estimating the parameters involved in uncertainty distributions. An empirical study has been carried out to compare the performance of the proposed method with the method of moments and the method of least squares considered by Wang and Peng (J. Uncertainty Analys. Appl. 2, (2014)) and Liu (Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, (2010)), respectively. The numerical study clearly establishes the superiority of the proposed method over the other two methods in estimating the parameters involved in linear uncertainty distribution when appropriate orders of percentiles are used in the estimation process.
Motivated by Sampath [Finite population variance estimation under LSS with multiple random starts, Commun. Statist. -Theory Methods 38 (2009), pp. 3596-3607], in this paper unbiased estimators for population variance have been developed under linear systematic sampling, balanced systematic sampling and modified systematic sampling with multiple random starts. Expressions for variances of the estimators are also developed. Detailed numerical comparative studies have been carried out to study the performances of the estimators under various systematic sampling schemes with multiple random starts and some interesting conclusions have been drawn out of the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.