This study sought to lend experimental support to the theoretical influence of force-velocity (F-v) mechanical profile on jumping performance independently from the effect of maximal power output (P max ). 48 high-level athletes (soccer players, sprinters, rugby players) performed maximal squat jumps with additional loads from 0 to 100% of body mass. During each jump, mean force, velocity and power output were obtained using a simple computation method based on flight time, and then used to determine individual linear F-v relationships and P max values. Actual and optimal F-v profiles were computed for each subject to quantify mechanical F-v imbalance. A multiple regression analysis showed, with a high-adjustment quality (r²=0.931, P<0.001, SEE=0.015 m), significant contributions of P max , F-v imbalance and lower limb extension range (h PO ) to explain interindividual differences in jumping performance (P<0.001) with positive regression coefficients for P max and h PO and a negative one for F-v imbalance. This experimentally supports that ballistic performance depends, in addition to P max , on the F-v profile of lower limbs. This adds support to the actual existence of an individual optimal F-v profile that maximizes jumping performance, a F-v imbalance being associated to a lower performance. These results have potential strong applications in the field of strength and conditioning.
An imbalance in the agonist/antagonist ratio has been identified as a pathologic factor. Using an isokinetic dynamometer, several studies have investigated the loss of quadriceps strength due to fatigue, but few have explored this phenomenon in the hamstrings. This study assessed the decline in strength of the hamstring and quadriceps muscles with fatigue. The goal was to determine whether a divergence in the decline in strength occurs that would affect the hamstring to quadriceps ratio of endurance. Twenty-seven professional soccer players were selected for endurance testing to evaluate fatigue on an isokinetic dynamometer. The decline in hamstring strength was significantly greater than that of the quadriceps after 15 repetitions for the dominant leg and after 40 repetitions for the nondominant leg. This study also revealed a decline in the endurance ratio compared with the maximal strength ratio in the dominant leg after 30 repetitions. In fatigue states, the decline in hamstring strength diverges from that of the quadriceps in both legs. This difference in resistance to fatigue provokes an imbalance that may affect the stabilizing function of the thigh muscles. These results can be considered as indicators of an increased risk of injury during exhausting effort.
Sangnier, S, Cotte, T, Brachet, O, Coquart, J, and Tourny, C. Planning training workload in football using small-sided games density. J Strength Cond Res XX(X): 000-000, 2018-To develop the physical qualities, the small-sided games' (SSGs) density may be essential in soccer. Small-sided games are games in which the pitch size, players' number, and rules are different to those for traditional soccer matches. The purpose was to assess the relation between training workload and SSGs' density. The 33 densities data (41 practice games and 3 full games) were analyzed through global positioning system (GPS) data collected from 25 professional soccer players (80.7 ± 7.0 kg; 1.83 ± 0.05 m; 26.4 ± 4.9 years). From total distance, distance metabolic power, sprint distance, and acceleration distance, the data GPS were divided into 4 categories: endurance, power, speed, and strength. Statistical analysis compared the relation between GPS values and SSGs' densities, and 3 methods were applied to assess models (R-squared, root-mean-square error, and Akaike information criterion). The results suggest that all the GPS data match the player's essential athletic skills. They were all correlated with the game's density. Acceleration distance, deceleration distance, metabolic power, and total distance followed a logarithmic regression model, whereas distance and number of sprints follow a linear regression model. The research reveals options to monitor the training workload. Coaches could anticipate the load resulting from the SSGs and adjust the field size to the players' number. Taking into account the field size during SSGs enables coaches to target the most favorable density for developing expected physical qualities. Calibrating intensity during SSGs would allow coaches to assess each athletic skill in the same conditions of intensity as in the competition.
Many studies have presented regression models of quadriceps (Q) muscle strength loss with fatigue development. Paradoxically, the hamstrings (H), which are the principal site of muscle injury in soccer players, have received little attention, and no regression model has been established. This study investigated strength loss in the Q and H to establish a regression model using the lowest number of flexions-extensions during isokinetic endurance testing. Twenty-four semiprofessional soccer players performed 50 flexion-extension movements at 180 degrees x s(-1) on an isokinetic dynamometer. The theoretical equations were calculated from the first 10, first 15, first 20, and first 25 contractions for each muscle group by several regression models (linear, quadratic, cubic). The linear model was the best fit to this exercise protocol to describe the strength loss in both muscle groups. The quadratic model was the best fit to predict the changes in the H/Q ratio. This study showed that a regression model can be established for both muscle groups. A minimum of 20 extensions and 15 flexions was needed to establish a linear model that represented strength loss in, respectively, Q and H. A minimum of 25 flexions-extensions was needed with the quadratic model to accurately determine the decrease in the H/Q ratio. Isokinetic endurance testing can be carried out with only 25 flexions-extensions. This reduction should facilitate the implementation of this protocol. Regular evaluation would contribute to the efforts to prevent muscle injury during competitive sports activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.