α-MnO2 is a promising material for Li-ion batteries and has unique tunneled structure that facilitates the diffusion of Li(+). The overall electrochemical performance of α-MnO2 is determined by the tunneled structure stability during its interaction with Li(+), the mechanism of which is, however, poorly understood. In this paper, a novel tetragonal-orthorhombic-tetragonal symmetric transition during lithiation of K(+)-stabilized α-MnO2 is observed using in situ transmission electron microscopy. Atomic resolution imaging indicated that 1 × 1 and 2 × 2 tunnels exist along c ([001]) direction of the nanowire. The morphology of a partially lithiated nanowire observed in the ⟨100⟩ projection is largely dependent on crystallographic orientation ([100] or [010]), indicating the existence of asynchronous expansion of α-MnO2's tetragonal unit cell along a and b lattice directions, which results in a tetragonal-orthorhombic-tetragonal (TOT) symmetric transition upon lithiation. Such a TOT transition is confirmed by diffraction analysis and Mn valence quantification. Density functional theory (DFT) confirms that Wyckoff 8h sites inside 2 × 2 tunnels are the preferred sites for Li(+) occupancy. The sequential Li(+) filling at 8h sites leads to asynchronous expansion and symmetry degradation of the host lattice as well as tunnel instability upon lithiation. These findings provide fundamental understanding for appearance of stepwise potential variation during the discharge of Li/α-MnO2 batteries as well as the origin for low practical capacity and fast capacity fading of α-MnO2 as an intercalated electrode.
It is commonly perceived that reduction-oxidation (redox) capacitors have to sacrifice power density to achieve higher energy density than carbon-based electric double layer capacitors. In this work, we report the synergetic advantages of combining the high crystallinity of hydrothermally synthesized α-MnO2 nanorods with alignment for high performance redox capacitors. Such an approach is enabled by high voltage electrophoretic deposition (HVEPD) technology which can obtain vertically aligned nanoforests with great process versatility. The scalable nanomanufacturing process is demonstrated by roll-printing an aligned forest of α-MnO2 nanorods on a large flexible substrate (1 inch by 1 foot). The electrodes show very high power density (340 kW/kg at an energy density of 4.7 Wh/kg) and excellent cyclability (over 92% capacitance retention over 2000 cycles). Pretreatment of the substrate and use of a conductive holding layer have also been shown to significantly reduce the contact resistance between the aligned nanoforests and the substrates. High areal specific capacitances of around 8500 μF/cm(2) have been obtained for each electrode with a two-electrode device configuration. Over 93% capacitance retention was observed when the cycling current densities were increased from 0.25 to 10 mA/cm(2), indicating high rate capabilities of the fabricated electrodes and resulting in the very high attainable power density. The high performance of the electrodes is attributed to the crystallographic structure, 1D morphology, aligned orientation, and low contact resistance.
Deposition of aligned forests of 1D nanoparticles (carbon nanotubes and MnO(2) nanorods) on conductive, including flexible and transparent, substrates has been achieved at room temperature. The process, named high-voltage electrophoretic deposition (HVEPD), has been enabled by three key elements: high deposition voltage for alignment, low dispersion concentration of the nanoparticles to avoid aggregation, and simultaneous formation of a holding layer by electrodeposition. The effects of key parameters are investigated. The alignment on the vertical direction has been revealed by scanning electron microscopy of the samples, their superhydrophobicity, electrochemical performance, and capability to electrically connect two separated electrodes. Compared with their randomly oriented counterparts, the aligned nanoforests showed higher electrochemical capacitance, lower electrical resistance, and the capability to achieve superhydrophobicity, implicating their potential in a broad range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.