This paper presents a general multi-scale multi-physics lithium-ion battery model framework, the Multi-Scale Multi-Dimensional model. The model introduces multiple coupled computational domains to resolve the interplay of lithium-ion battery physics in varied length scales. Model geometry decoupling and domain separation for the physicochemical process interplay are valid where the characteristic time or length scale is segregated. Assuming statistical homogeneity for repeated architectures typical of lithium-ion battery devices is often adequate and effective for modeling submodel geometries and physics in each domain. The modularized hierarchical architecture of the model provides a flexible and expandable framework facilitating modeling of the multiphysics behavior of lithium-ion battery systems. In this paper, the Multi-Scale Multi-Dimensional model is introduced and applied to a model analysis that resolves electrochemical-, electrical-, and thermal-coupled physics in large-format stacked prismatic cell designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.