Apoptosis is a fundamental homeostatic mechanism essential for the normal growth, development and maintenance of every tissue and organ. Dying cells have been defined as apoptotic by distinguishing features, including cell contraction, nuclear fragmentation, blebbing, apoptotic body formation and maintenance of intact cellular membranes to prevent massive protein release and consequent inflammation. We now show that during early apoptosis limited membrane permeabilization occurs in blebs and apoptotic bodies, which allows release of proteins that may affect the proximal microenvironment before the catastrophic loss of membrane integrity during secondary necrosis. Blebbing, apoptotic body formation and protein release during early apoptosis are dependent on ROCK and myosin ATPase activity to drive actomyosin contraction. We identified 231 proteins released from actomyosin contraction-dependent blebs and apoptotic bodies by adapted SILAC (stable isotope labeling with amino acids in cell culture) combined with mass spectrometry analysis. The most enriched proteins released were the nucleosomal histones, which have previously been identified as damage-associated molecular pattern proteins (DAMPs) that can initiate sterile inflammatory responses. These results indicate that limited membrane permeabilization occurs in blebs and apoptotic bodies before secondary necrosis, leading to acute and localized release of immunomodulatory proteins during the early phase of active apoptotic membrane blebbing. Therefore, the shift from apoptosis to secondary necrosis is more graded than a simple binary switch, with the membrane permeabilization of apoptotic bodies and consequent limited release of DAMPs contributing to the transition between these states.
SummaryFocal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.
Integrin α5β1 is a major fibronectin receptor critical for cell migration. Upon complex formation, fibronectin and α5β1 undergo conformational changes. While this is key for cell-tissue connections, its mechanism is unknown. Here, we report cryo–electron microscopy structures of native human α5β1 with fibronectin to 3.1-angstrom resolution, and in its resting state to 4.6-angstrom resolution. The α5β1-fibronectin complex revealed simultaneous interactions at the arginine-glycine-aspartate loop, the synergy site, and a newly identified binding site proximal to adjacent to metal ion–dependent adhesion site, inducing the translocation of helix α1 to secure integrin opening. Resting α5β1 adopts an incompletely bent conformation, challenging the model of integrin sharp bending inhibiting ligand binding. Our biochemical and structural analyses showed that affinity of α5β1 for fibronectin is increased with manganese ions (Mn2+) while adopting the half-bent conformation, indicating that ligand-binding affinity does not depend on conformation, and α5β1 opening is induced by ligand-binding.
Inverse acinar regulation of Mrp2 and 3 represents an adaptive response to hepatocellular cholestatic injury. We studied whether obstructive cholestasis (bile duct ligation) and LPS treatment affect the zonal expression of Bsep (Abcb11), Mrp4 (Abcc4), Ntcp (Slc10a1), and Oatp isoforms (Slco1a1, Slco1a4, and slco1b2) in rat liver, as analyzed by semiquantitative immunofluorescence. Contribution of TNF-alpha and IL-1beta to transporter zonation in obstructive cholestasis was studied by cytokine inactivation. In normal liver Bsep, Mrp4, Ntcp, and Oatp1a1 were homogeneously distributed in the acinus, whereas Oatp1a4 and Oatp1b2 expression increased from zone 1 to 3. Glutamine synthetase-positive pericentral hepatocytes exhibited markedly lower Oatp1a4 expression than the remaining zone 3 hepatocytes. In cholestatic liver Bsep and Ntcp immunofluorescence in periportal hepatocytes significantly decreased to 66 +/- 4% (P < 0.01) and 67 +/- 7% (P < 0.05), whereas it was not altered in pericentral hepatocytes. Oatp1a4 was significantly induced in hepatocytes with a primarily low expression, i.e., in periportal hepatocytes and in glutamine synthetase-positive pericentral hepatocytes. Likewise, Oatp1b2 was upregulated in periportal hepatocytes. Mrp4 zonal induction was homogeneous. Inactivation of TNF-alpha and IL-1beta prevented periportal downregulation of Bsep. Recruitment of neutrophils and polymorphonuclear cells mainly occurred in the periportal zone. Likewise, IL-1beta induction was largely found periportally. No significant transporter zonation was seen following LPS treatment. In conclusion, zonal downregulation of Bsep in obstructive cholestasis is associated with portal inflammation and is mediated by TNF-alpha and IL-1beta. Periportal downregulation of Ntcp and induction of Oatp1a4 and Oatp1b2 may represent adaptive mechanisms to reduce cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.