Changes in chemical composition and hydrolytic enzyme activities in guava fruits cv. Lucknow-49 have been reported at four different stages of maturity, viz., mature green (MG), color turning (CT), ripe (R) and over ripe (OR). Chlorophyll content decreased, while carotenoid content increased with advancement of ripening. Starch content decreased with concomitant increase in alcohol soluble sugars. The cell wall constituents viz., cellulose, hemicellulose, and lignin decreased up to R stage, while the pectin content decreased throughout up to OR stage. Among the cell wall hydrolyzing enzymes, polygalacturonase (PG) and ceUulase exhibited progressive increase in activity throughout ripening, while pectin methyl esterase (PME) activity increased up to CT stage and then decreased up to OR stage. The maximum increase in the activities of cell wall hydrolysing enzymes was observed between MG and CT stages. The activities of starch hydrolyzing enzymes, a-amylase and [~-amylase decreased significantly with advancement of ripening. These changes in the activities of hydrolyzing enz y m e s could be considered good indicators of ripening in guava.
Guava is a climacteric fruit so physico-chemical changes continuously occur after harvest till fruit become unfit for consumption and suffers from post harvest losses. The main objective of this work was to assess the effectiveness of individual film in form of Shrink and Cling wrap on shelf life of guava. Fruits were individually packed in polythene bags (LDPE) of 200 gauge thickness by Shrink and Cling wrapping and stored at 7±3°C. Individual wrapping reduced the magnitude of changes during storage i.e., ripening process drastically as evident from lower total soluble solids, higher ascorbic acid, polyphenol content with lower polyphenol oxidase activity and physiological loss of weight (PLW) was less than 3.5 %. Film wrapping preserved freshness of wrapped fruits as they remained acceptable for whole storage time in contrast to control fruits which turned unacceptable by 15 th day of storage. Control fruits showed significant compositional changes as well as in polyphenol content, ascorbic acid and reduced number of marketable fruits while Cling and Shrink wrapping enhanced the shelf life by 10 days.
The objective of this research work was to evaluate the effects of UV-irradiation, pulsed electric field (PEF), hot water dip (HWD) and ethanol vapours on the quality and storage life of mung bean sprouts (Vigna radiata L. Wilczek). The sprouts were subjected to various treatments viz., UVIrradiation (10 kJm −2 in laminar flow chamber for 1 h), PEF (10,000 V for 10s), HWD (50°C for 2 min) and ethanol vapours (1 h); and then stored in thermocol cups wrapped with perforated cling films at room (25±1°C) and low (7±1°C) temperature conditions. The sprouts were analyzed regularly at 24 h interval for sprout length, sprout weight, total soluble solids (TSS), titratable acidity, non-enzymatic browning, total plate count and overall acceptability. Sprout length and weight increased during storage. There was no significant effect of various treatments on sprout length and weight, except in ethanol treatment, where suppression was observed. HWD showed higher TSS and acidity than that of control. The least browning was observed in ethanol treatment. The total plate count was not significantly affected by various treatments. Overall acceptability under various treatments decreased during storage period both at room and low temperature. Hot water and ethanol vapour treated sprouts showed higher acceptability than other treatments. However, the acceptability scores for sprouts remained within the acceptable range (≥6) up to 72 h at room temperature and 120 h at low temperature conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.