As the size of the document collections are increasing day-by-day, finding an essential document clusters for classification problem is one of the major problem due to high inter and intra document variations. Also, most of the conventional classification models such as SVM, neural network and Bayesian models have high true negative rate and error rate for document classification process. In order to improve the computational efficacy of the traditional document classification models, a hybrid feature extraction-based document cluster approach and classification approaches are developed on the large document sets. In the proposed work, a hybrid glove feature selection model is proposed to improve the contextual similarity of the keywords in the large document corpus. In this work, a hybrid document clustering similarity index is optimized to find the essential key document clusters based on the contextual keywords. Finally, a hybrid document classification model is used to classify the clustered documents on large corpus. Experimental results are conducted on different datasets, it is noted that the proposed document clustering-based classification model has high true positive rate, accuracy and low error rate than the conventional models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.