Bioprotection of pea roots against Aphanomyces euteiches by the arbuscular mycorrhizal fungus G. mosseae was demonstrated to depend on a fully established symbiosis. This was related with induction of mycorrrhiza-related chitinolytic enzymes. Possible mechanisms implicated in bioprotection are discussed.
Arbuscular mycorrhizal (AM) symbioses are known to play a role in increased resistance of plants against soilborne pathogens. Mechanisms involved in this phenomenon are not yet well understood. This work investigates possible roles of endoproteolytic activities in bioprotection of Pisum sativum roots by Glomus mosseae against Aphanomyces euteiches. First, it is demonstrated that bioprotection occurs only in pre-mycorrhizal plants. Second, endoproteolytic activities were analysed qualitatively and quantitatively during AM symbiosis, in plants infected with either zoospores or mycelium of A. euteiches, and in mycorrhizal plants infected with the pathogen. In mycorrhizal symbiosis a progressive increase in endoproteolytic activities was observed following root colonization by G. mosseae. By contrast, in roots inoculated with A. euteiches, a drastic increase in endoproteolytic activities was observed which was correlated with the amount of pathogen occurring in roots. Qualitative differences were seen among the endoproteolytic activities detected in roots inoculated with zoospores or mycelium. The constitutive as well as mycorrhizal and pathogen-induced activities were further characterized as ' trypsin-like ' serine endoproteases. Interestingly, in a situation of bioprotection, only low levels of the activities normally associated with the infection by A. euteiches were detected, suggesting that the synthesis of these proteins is directly linked to the growth or virulence of the pathogen.
Within the last decade, a great deal of attention has been devoted to the role of chitinases and/3-1,3-glucanases in plant/microbe interactions. While there is strong evidence that these hydrolases are antifungal proteins, there are also recent indications of roles in both plant morphogenesis and plant/microbe signal perception. This paper reviews recent findings pertinent to root/microbe interactions, and discusses the nature and significance of specific hydrolase isoforms in symbioses with arbuscular mycorrhizal (AM) fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.