Some forms of mild cognitive impairment (MCI) can be the clinical precursor of severe dementia like Alzheimer's disease (AD), while other types of MCI tend to remain stable over-time and do not progress to AD pathology. To choose an effective and personalized treatment for AD, we need to identify which MCI patients are at risk of developing AD and which are not. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying those people with MCI who have a high likelihood of developing AD. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genotyping data as input measures. The most novel characteristics of our machine learning model compared to previous ones are as follows: 1) multi-tasking, in the sense that our deep learning model jointly learns to simultaneously predict both MCI to AD conversion, and AD vs healthy classification which facilitates the relevant feature extraction for prognostication; 2) the neural network classifier employs relatively few parameters compared to other deep learning architectures (we use ~550,000 network parameters, orders of magnitude lower than other network designs) without compromising network complexity and hence significantly limits data-overfitting; 3) both structural MRI images and warp field characteristics, which quantify the amount of volumetric change compared to the common template, were used as separate input streams to extract as much information as possible from the MRI data. All the analyses were performed on a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, for a total of n=785 participants (192 AD, 409 MCI, and184 healthy controls (HC)). We found that the most predictive combination of inputs included the structural MRI images and the demographic, neuropsychological, and APOe4 data, while the warp field metric added little predictive value. We achieved an area under the ROC curve (AUC) of 0.925 with a 10-fold cross-validated accuracy of 86%, a sensitivity of 87.5% and specificity of 85% in classifying MCI patients who developed AD in three years' time from those individuals showing stable MCI over the same time-period. To the best of our knowledge, this is the highest performance reported on a test set achieved in the literature using similar data. The same network provided an AUC of 1 and 100% accuracy, sensitivity and specificity when classifying NC from AD. We also demonstrated that our classification framework was robust to different co-registration templates and possibly irrelevant features / image sections. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and a more diverse group of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer-aided diagnosis system targeting the prediction of any medical condition utilizing multi-modal imaging a...
Advanced age represents one of the major risk factors for Parkinson’s Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson’s Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson’s Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson’s Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson’s Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson’s Disease patients, and healthy siblings of Parkinson’s Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson’s Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson’s Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson’s Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson’s Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson’s Disease.
The genetic component of many common traits is associated with the gene expression and several variants act as expression quantitative loci, regulating the gene expression in a tissue specific manner. In this work, we applied tissue-specific cis-eQTL gene expression prediction models on the genotype of 808 samples including controls, subjects with mild cognitive impairment, and patients with Alzheimer's Disease. We then dissected the imputed transcriptomic profiles by means of different unsupervised and supervised machine learning approaches to identify potential biological associations. Our analysis suggests that unsupervised and supervised methods can provide complementary information, which can be integrated for a better characterization of the underlying biological system. In particular, a variational autoencoder representation of the transcriptomic profiles, followed by a support vector machine classification, has been used for tissue-specific gene prioritizations. Interestingly, the achieved gene prioritizations can be efficiently integrated as a feature selection step for improving the accuracy of deep learning classifier networks. The identified gene-tissue information suggests a potential role for inflammatory and regulatory processes in gut-brain axis related tissues. In line with the expected low heritability that can be apportioned to eQTL variants, we were able to achieve only relatively low prediction capability with deep learning classification models. However, our analysis revealed that the classification power strongly depends on the network structure, with recurrent neural networks being the best performing network class. Interestingly, cross-tissue analysis suggests a potentially greater role of models trained in brain tissues also by considering dementia-related endophenotypes. Overall, the present analysis suggests that the combination of supervised and unsupervised machine learning techniques can be used for the evaluation of high dimensional omics data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.