Homoserine kinase (HSK), the fourth enzyme in the aspartate pathway of amino acid biosynthesis, catalyzes the phosphorylation of L-homoserine (Hse) to L-homoserine phosphate, an intermediate in the production of L-threonine, L-isoleucine, and in higher plants, L-methionine. The high-resolution structures of Methanococcus jannaschii HSK ternary complexes with its amino acid substrate and ATP analogues have been determined by X-ray crystallography. These structures reveal the structural determinants of the tight and highly specific binding of Hse, which is coupled with local conformational changes that enforce the sequestration of the substrate. The delta-hydroxyl group of bound Hse is only 3.4 A away from the gamma-phosphate of the bound nucleotide, poised for the in-line attack at the gamma-phosphorus. The bound nucleotides are flexible at the triphosphate tail. Nevertheless, a Mg(2+) was located in one of the complexes that binds between the beta- and gamma-phosphates of the nucleotide with good ligand geometry and is coordinated by the side chain of Glu130. No strong nucleophile (base) can be located near the phosphoryl acceptor hydroxyl group. Therefore, we propose that the catalytic mechanism of HSK does not involve a catalytic base for activating the phosphoryl acceptor hydroxyl but instead is mediated via a transition state stabilization mechanism.
We present an overview of the fifth round of Critical Assessment of Protein Structure Prediction (CASP5) fold recognition category. Prediction models were evaluated by using six different structural measures and four different alignment measures, and these scores were compared to those assigned manually over a diverse subset of target domains. Scores were combined to compare overall performance of participating groups and to estimate rank significance. The methods used by a few groups outperformed all other methods in terms of the evaluated criteria and could be considered state-of-the-art in structure prediction. We discuss a few examples of difficult fold recognition targets to highlight the progress of ab initio-type methods on difficult structure analogs and the difficulties of predicting multidomain targets and selecting prediction models. We also compared the results of manual groups to those of automatic servers evaluated in parallel by CAFASP, showing that the top performing automated server structure predictions approached those of the best manual predictors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.