Reinforcing magnesium alloys with a discontinuously dispersed ceramic phase has engineered a new family of materials that are marketed under the trade name "metal-matrix composites". Continuous research efforts in the processing of these materials have provided the necessary impetus for their emergence and use in structural, automotive and even aerospace-related components. In this paper we report the results of a study aimed at understanding the role of short-fibre reinforcements (discontinuously dispersed through the metal-matrix of magnesium alloy AM100) on impact deformation and fracture behaviour. In particular, the role of volume fraction of the reinforcing phase on impact energy and fracture behaviour is presented and discussed. An increase in short-fibre reinforcement content in the magnesium alloy metal-matrix is observed to have a detrimental influence on impact energy when compared to the unreinforced counterpart. Micro cracking in the metal-matrix coupled with failure of the reinforcing fibres, both independently dispersed and in clusters, dominates the fracture sequence at the microscopic level. The final fracture behaviour of the composite material is discussed in the light of the concurrent and mutually interactive influences of nature of loading, local stress state, intrinsic microstructural effects and deformation characteristics of the composite constituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.