Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems.
Xylanases are used mainly in the pulp and paper industries for the pretreatment of Kraft pulp prior to bleaching to minimize use of chlorine, the conventional bleaching agent. This application has great potential as an environmentally safe method. Hydrolysis by xylanases of relocated and reprecipitated xylan on the surface of cellulose fibres formed during Kraft cooking facilitates the removal of lignin by increasing permeability to oxidising agents. Most of the xylanases reported in the literature contained significant cellulolytic activity, which make them less suitable for pulp and paper industries. The need for large quantities of xylanases which would be stable at higher temperatures and pH values and free of cellulase activity has necessitated a search for novel enzymes. We have isolated and characterised several xylanase‐producing cultures, one of which (an alkalophilic Bacillus SSP‐34) produced more than 100 IU ml−1 of xylanase activity. The SSP‐34 xylanases have optimum activity at 50°C in a pH range 6–8, with only small amounts of cellulolytic activity (CMCase (0.4 IU ml−1, pH 7), FPase (0.2 IU ml−1, pH 7) and no activity at pH 9).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.