Decentralized wastewater treatment system (DEWATS) are widely used for the treatment of wastewater originating from residences, institutes and municipalities, specifically in South India. Most of these STPs are denounced owing to failures on several fronts including design, operation and maintenance, installation and monitoring. A comprehensive review and evaluation of STPs was timely, in order to derive sound conclusions and recommendations for future wastewater management strategies. The objective of the present study was to conduct an independent evaluation of already existing decentralized STPs in South India. The technologies assessed were Aerated lagoon (AL), Extended aeration (EA), Anaerobic filter/Vortex put forward by Centre for Scientific Research (CSR VORTEX), Constructed Wetland (DEWATS others), Membrane bioreactor (MBR) and Moving bed Biofilm reactor (MBBR). Among the various technologies evaluated, MBR exhibited the highest total COD, BOD and solids removal efficiency. Pathogen count was lowest in MBR, followed by MBBR and AL. Nutrient removal in terms of ammoniacal nitrogen and nitrate nitrogen was highest in DEWATS. Effective hours of continuous operation enabled improved plant performance. In case of natural treatment technology such as DEWATS, energy requirement is quite low, whereas conventional treatment technologies such as EA necessitate considerably high demand of energy, requiring few personnel to operate the system. Innovative high cell density systems such as MBBR and MBR entail significant power consumption and elaborate maintenance, requiring large number of skilled professionals. The major reasons for failure of STPs were related to mechanical, electrical and labour problems. Regular monitoring and maintenance is required with due diligence in all the treatment technologies for proper functioning.
ab s t r ac tMembrane bioreactor (MBR) technology combines the activated sludge process and membrane filtration in a single step, where the separation of activated sludge and effluent is achieved with the help of the membranes. MBR permits good control of biological activity and high organic loading rates resulting in high quality effluent and small plant size. This paper reviews the potential applications of the MBR technology for the removal of nitrogen from effluents. The study reveals the prospects of choosing the right configuration of MBR (aerobic, anoxic/ anaerobic, completely anaerobic, integrated anaerobic/aerobic) for treatment of nitrogen rich wastewaters.
Anaerobic ammonium oxidation (ANAMMOX) process, an advanced biological nitrogen removal, removes ammonia using nitrite as the electron acceptor without oxygen. In this paper, ANAMMOX process was adopted for removing NH4+-N from landfill leachate having low COD using anaerobic membrane bioreactor (AnMBR). The AnMBR was optimized for nitrogen loading rate (NLR) varying from 0.025 to 5 kg NH4+-N/m3/d with hydraulic retention time (HRT) ranging from 1 to 3d. NH4+-N removal efficacy of 85.13 +/- 9.67% with the mean nitrogen removal rate of 5.54 +/- 0.63 kg NH4+-N/m3/d was achieved with NLR of 6.51 +/- 0.20kg NH4+-N/m3/d at 1.5 d HRT. The nitrogen transformation intermediates in the form of hydrazine (N2H4) and hydroxylamine (NH2OH) were 0.008 +/- 0.005 and 0.006 +/- 0.001 mg/l, respectively, indicating co-existence of aerobic ammonia oxidizers and ANAMMOX. The free ammonia (NH3) and free nitrous acid (HNO2) concentrations were 26.61 +/- 16.54 mg/l and (1.66 +/- 0.95) x 10(-5) mg/l, preventing NO2(-)-N oxidation to NO3(-)-N enabling sustained NH4+-N removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.