Evaporation of colloidal drops on horizontal surfaces deposits the contained particles at the drop-edge producing radially symmetric ring-like stains. The symmetry in the particle deposition is broken when the drop is placed on a tilted surface due to the influence of gravity on the suspended particles and the drop itself. Using extremely small drops generated by electrospray, we explore cases where different mechanisms of particle transport dominate. We show that the asymmetric residues are formed as the gravity-induced effects compete with the capillary flow. Our results give a broad insight into the pattern formation of evaporating inclined drops.
The evaporation of antigen-laden sessile droplets on antibody-immobilized PDMS substrates could be used in place of microwells for detection purposes owing to the lesser requirements of analytes and a reduced reaction time. To develop such techniques, the effects of different parameters on the reaction efficiency and on the resulting deposition patterns of antigens on the surface after evaporation need to be well understood. While the resultant deposition patterns from the evaporation of droplets of biological fluids on surfaces are being studied for various biomedical applications, systems where the analyte of interest in the droplet binds to the surface have not been investigated until now. While the effect of temperature on the internal convection within sessile droplets has been studied, the effect of the analyte (antigen in this work) concentration and the analyte–surface (antigen–antibody in this work) binding on the internal convection has not been studied until now. Therefore, to gain insight, the evaporation dynamics of sessile droplets with different concentrations of antigens along with polystyrene microspheres (used as tracers) in phosphate-buffered saline (PBS) on antibody-immobilized PDMS substrates were experimentally studied using microparticle image velocimetry (PIV). It was found that Marangoni flow due to concentration gradients and surface reactions was responsible for the observed velocity field. The antibody–antigen reaction (as compared to the control case of no surface reaction) and higher concentrations of prostate specific antigen (PSA) resulted in increased strength of Marangoni convection. To obtain further insight into the different deposition patterns obtained, the contributions of different particle–particle and particle–substrate forces were determined, and it was observed that the Marangoni forces along with surface tension and DLVO forces create a uniform deposition of the particles present within the droplet. This learning could be used to design biosensors.
This review focuses on the laser-induced fluorescence (LIF) spectroscopy of trapped gas-phase molecular ions, a developing field of research. Following a brief description of the theory and experimental approaches employed in general for fluorescence spectroscopy, the review summarizes the current state-of-the-art intrinsic fluorescence measurement techniques employed for gas-phase ions. Whereas the LIF spectroscopy of condensed matter systems is a well-developed area of research, the instrumentation used for such studies is not directly applicable to gas-phase ions. However, some measurement schemes employed in condensed-phase experiments could be highly beneficial for gas-phase investigations. We have included a brief discussion on some of these techniques as well. Quadrupole ion traps are commonly used for spatial confinement of ions in the ion-trap–based LIF. One of the main challenges involved in such experiments is the poor signal-to-noise ratio (SNR) arising due to weak gas-phase fluorescence emission, high background noise, and small solid angle for the fluorescence collection optics. The experimental approaches based on the integrated high-finesse optical cavities employed for the condensed-phase measurements provide a better (typically an order of magnitude more) SNR in the detected fluorescence than the single-pass detection schemes. Another key to improving the SNR is to exploit the maximum solid angle of light collection by choosing high numerical aperture (NA) collection optics. A combination of these two approaches integrated with ion traps could transmogrify this field, allowing one to study even weak fluorescence emission from gas-phase molecular ions. The review concludes by discussing the scope of the advances in the LIF instrumentation for detailed spectral characterization of fluorophores of weak gas-phase fluorescence emission, considering fluorescein as one example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.