A nonlinear loaded differential equation with a parameter on a finite interval is studied. The interval is partitioned by the load points, at which the values of the solution to the equation are set as additional parameters. A nonlinear boundary value problem for the considered equation is reduced to a nonlinear multipoint boundary value problem for the system of nonlinear ordinary differential equations with parameters. For fixed parameters, we obtain the Cauchy problems for ordinary differential equations on the subintervals. Substituting the values of the solutions to these problems into the boundary condition and continuity conditions at the partition points, we compose a system of nonlinear algebraic equations in parameters. A method of solving the boundary value problem with a parameter is proposed. The method is based on finding the solution to the system of nonlinear algebraic equations composed. KEYWORDS loaded differential equation with parameter, method of solving, nonlinear boundary value problem MSC CLASSIFICATION
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.