2019
DOI: 10.1002/mma.6003
|View full text |Cite
|
Sign up to set email alerts
|

A method of solving a nonlinear boundary value problem with a parameter for a loaded differential equation

Abstract: A nonlinear loaded differential equation with a parameter on a finite interval is studied. The interval is partitioned by the load points, at which the values of the solution to the equation are set as additional parameters. A nonlinear boundary value problem for the considered equation is reduced to a nonlinear multipoint boundary value problem for the system of nonlinear ordinary differential equations with parameters. For fixed parameters, we obtain the Cauchy problems for ordinary differential equations on… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 23 publications
(4 citation statements)
references
References 15 publications
0
3
0
1
Order By: Relevance
“…Ары қарай параметрлеу әдісі дифференциалдық теңдеулердің әртүрлі кластары үшін шеттік есептерді шешуде Д.С. Жұмабаевтың [11,12] және оның оқушыларының жұмыстарында [13][14][15][16][17][18][19][20][21][22] орын алды.…”
Section: кіріспеunclassified
“…Ары қарай параметрлеу әдісі дифференциалдық теңдеулердің әртүрлі кластары үшін шеттік есептерді шешуде Д.С. Жұмабаевтың [11,12] және оның оқушыларының жұмыстарында [13][14][15][16][17][18][19][20][21][22] орын алды.…”
Section: кіріспеunclassified
“…Currently, there are very few research findings on arbitrary fractional-order differential problems with nonlinear variables in the boundaries and infinite-point boundary value requirements. The literature [5] examines parameterized nonlinear loaded differential equations on finite intervals and suggests a technique for parameterized boundary value issue solving that relies on the solution of a nonlinear equation system. Literature [6] for multipoint boundary value problems establishes requirements for moderate solutions for linked structures involving fractional-order mixed linear equations with second-order perturbations.…”
Section: Introductionmentioning
confidence: 99%
“…In the present paper we propose a new approach for the study and solving of the parameter identification problem for the system of differential equations based on the Dzhumabaev's parameterization method [9][10][11][12][13][14][15][16][17][18][19][20]. The method was originally offered in [9,10] for solving two-point boundary value problems for a linear differential equation.…”
Section: Introductionmentioning
confidence: 99%