A rough surface morphology is shown to significantly amplify the light-induced change in water contact angle of a photoresponsive surface. Smooth Si surfaces and fractally rough Si nanowire surfaces grown on a Si substrate were studied, both coated with a hydrophobic monolayer containing photochromic spiropyran molecules. Under visible irradiation the spiropyran is in a closed, hydrophobic form, whereas UV irradiation converts the spiropyran to a polar, hydrophilic form, reducing the contact angle. The superhydrophobic nanowire surface both amplifies the light-induced contact angle change by a factor of 2 relative to a smooth surface and reduces the contact angle hysteresis. As a result the UV-induced advancing contact angle is lower than the receding contact angle under visible irradiation, allowing water drops to be moved solely under the influence of a UV−visible light gradient. The amplification of the reversible light-induced wetting angle change was predicted using the Wenzel model for fractally rough surfaces. The model and amplification effects are expected to apply to other types of stimuli-induced contact angle changes such as that by heat or electrical potentials.
By the virtue of the nature of the vapor-liquid-solid (VLS) growth process in semiconductor nanowires (NWs) and their small size, the nucleation, propagation, and termination of stacking defects in NWs are dramatically different from that in thin films. We demonstrate germanium-silicon axial NW heterostructure growth by the VLS method with 100% composition modulation and use these structures as a platform to understand how defects in stacking sequence force the ledge nucleation site to be moved along or pinned at a single point on the triple-phase circumference, which in turn determines the NW morphology. Combining structural analysis and atomistic simulation of the nucleation and propagation of stacking defects, we explain these observations based on preferred nucleation sites during NW growth. The stacking defects are found to provide a fingerprint of the layer-by-layer growth process and reveal how the 19.5° kinking in semiconductor NWs observed at high Si growth rates results from a stacking-induced twin boundary formation at the NW edge. This study provides basic foundations for an atomic level understanding of crystalline and defective ledge nucleation and propagation during [111] oriented NW growth and improves understanding for control of fault nucleation and kinking in NWs.
General trends in integrated circuit technology toward smaller device dimensions, lower thermal budgets, and simplified processing steps present severe physical and engineering challenges to ion implantation. These challenges, together with the need for physically based models at exceedingly small dimensions, are leading to a new level of understanding of fundamental defect science in Si. In this article, we review the current status and future trends in ion implantation of Si at low and high energies with particular emphasis on areas where recent advances have been made and where further understanding is needed. Particularly interesting are the emerging approaches to defect and dopant distribution modeling, transient enhanced diffusion, high energy implantation and defect accumulation, and metal impurity gettering. Developments in the use of ion beams for analysis indicate much progress has been made in one-dimensional analysis, but that severe challenges for two-dimensional characterization remain. The breadth of ion beams in the semiconductor industry is illustrated by the successful use of focused beams for machining and repair, and the development of ion-based lithographic systems. This suite of ion beam processing, modeling, and analysis techniques will be explored both from the perspective of the emerging science issues and from the technological challenges.
The movement of a liquid droplet on a flat surface functionalized with a photochromic azobenzene may be driven by the irradiation of spatially distinct areas of the drop with different UV and visible light fluxes to create a gradient in the surface tension. In order to better understand and control this phenomenon, we have measured the wetting characteristics of these surfaces for a variety of liquids after UV and visible light irradiation. The results are used to approximate the components of the azobenzene surface energy under UV and visible light using the van Oss-Chaudhury-Good equation. These components, in combination with liquid parameters, allow one to estimate the strength of the surface interaction as given by the advancing contact angle for various liquids. The azobenzene monolayers were formed on smooth air-oxidized Si surfaces through 3-aminopropylmethyldiethoxysilane linkages. The experimental advancing and receding contact angles were determined following azobenzene photoisomerization under visible and ultraviolet (UV) light. Reversible light-induced advancing contact-angle changes ranging from 8 to 16 degrees were observed. A large reversible change in contact angle by photoswitching of 12.4 degrees was achieved for water. The millimeter-scale transport of 5 microL droplets of certain liquids was achieved by creating a spatial gradient in visible/UV light across the droplets. A criterion for light-induced motion of droplets is shown to be consistent with the response of a variety of liquids. The type of light-driven fluid movement observed could have applications in microfluidic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.