A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to the ab-plane. Here, we conduct 115 In NMR studies of this material in a perpendicular field, and provide strong evidence for FFLO in this case as well. Although the topology of the phase transition lines in the H-T phase diagram is identical for both configurations, there are several remarkable differences between them. Compared to H ab, the FFLO region for H ⊥ ab shows a sizable decrease, and the critical field separating the FFLO and non-FFLO superconducting states almost ceases to have a temperature dependence. Moreover, directing H ⊥ ab results in a notable change in the quasiparticle excitation spectrum within the planar node associated with the FFLO transition.
We measured the temperature dependent resistivity, varrho(T), of the intercalated graphite superconductor CaC6 as a function of pressure up to 16 GPa. We found a large linear increase of critical temperature, Tc, from the ambient pressure value 11.5 K up to 15.1 K, the largest value for intercalated graphite, at 7.5 GPa. At approximately 8 GPa, a jump of varrho and a sudden drop of Tc down to approximately 5 K indicates the occurrence of a phase transition. Our data analysis suggests that a pressure-induced phonon softening related to an in-plane Ca phonon mode is responsible for the Tc increase and that higher pressures greater, similar8 GPa lead to a structural transition into a new phase with a low Tc less, similar3 K.
We present a 115In NMR study of the quasi-two-dimensional heavy-fermion superconductor CeCoIn5 believed to host a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state. In the vicinity of the upper critical field and with a magnetic field applied parallel to the ab plane, the NMR spectrum exhibits a dramatic change below T*(H) which well coincides with the position of reported anomalies in specific heat and ultrasound velocity. We argue that our results provide the first microscopic evidence for the occurrence of a spatially modulated superconducting order parameter expected in a FFLO state. The NMR spectrum also implies an anomalous electronic structure of vortex cores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.