Abstract:Groundwater accounts for half of Indian urban water use. However, little is known about its sustainability, because of inadequate monitoring and evaluation. We deployed a dense monitoring network in 154 locations in Bengaluru, India between 2015 and 2017. Groundwater levels collected at these locations were analyzed to understand the behavior of the city's groundwater system. At a local scale, groundwater behavior is non-classical, with valleys showing deeper groundwater than ridge-tops. We hypothesize that this is due to relatively less pumping compared to artificial recharge from leaking pipes and wastewater in the higher, city core areas, than in the rapidly growing, lower peripheral areas, where the converse is true. In the drought year of 2016, groundwater depletion was estimated at 27 mm, or 19 Mm 3 over the study area. The data show that rainfall has the potential to replenish the aquifer. High rainfall during August-September 2017 led to a mean recharge of 67 mm, or 47 Mm 3 for the study area. A rainfall recharge factor of 13.5% was estimated from the data for 2016. Sustainable groundwater management in Bengaluru must account for substantial spatial socio-hydrological heterogeneity. Continuous monitoring at high spatial density will be needed to inform evidence-based policy.
Availability of global satellite based Soil Moisture (SM) data has promoted the emergence of many applications in climate studies, agricultural water resource management and hydrology. In this context, validation of the global data set is of substance. Remote sensing measurements which are representative of an area covering 100 m2 to tens of km2 rarely match with in situ SM measurements at point scale due to scale difference. In this paper we present the new Indian Cosmic Ray Network (ICON) and compare it’s data with remotely sensed SM at different depths. ICON is the first network in India of the kind. It is operational since 2016 and consist of seven sites equipped with the COSMOS instrument. This instrument is based on the Cosmic Ray Neutron Probe (CRNP) technique which uses non-invasive neutron counts as a measure of soil moisture. It provides in situ measurements over an area with a radius of 150–250 m. This intermediate scale soil moisture is of interest for the validation of satellite SM. We compare the COSMOS derived soil moisture to surface soil moisture (SSM) and root zone soil moisture (RZSM) derived from SMOS, SMAP and GLDAS_Noah. The comparison with surface soil moisture products yield that the SMAP_L4_SSM showed best performance over all the sites with correlation (R) values ranging from 0.76 to 0.90. RZSM on the other hand from all products showed lesser performances. RZSM for GLDAS and SMAP_L4 products show that the results are better for the top layer R = 0.75 to 0.89 and 0.75 to 0.90 respectively than the deeper layers R = 0.26 to 0.92 and 0.6 to 0.8 respectively in all sites in India. The ICON network will be a useful tool for the calibration and validation activities for future SM missions like the NASA-ISRO Synthetic Aperture Radar (NISAR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.