This study explores the benefits of assimilating SMOS soil moisture retrievals for hydrologic modeling, with a focus on soil moisture and streamflow simulations in the Murray Darling Basin, Australia. In this basin, floods occur relatively frequently and initial catchment storage is known to be key to runoff generation. The land surface model is the Variable Infiltration Capacity (VIC) model. The model is calibrated using the available streamflow records of 169 gauge stations across the Murray Darling Basin. The VIC soil moisture forecast is sequentially updated with observations from the SMOS Level 3 CATDS (Centre Aval de Traitement des Données SMOS) soil moisture product using the Ensemble Kalman filter. The assimilation algorithm accounts for the spatial mismatch between the model (0.125°) and the SMOS observation (25 km) grids. Three widely-used methods for removing bias between model simulations and satellite observations of soil moisture are evaluated. These methods match the first, second and higher order moments of the soil moisture distributions, respectively. In this study, the first order bias correction, i.e. the rescaling of the long term mean, is the recommended method. Preserving the observational variability of the SMOS soil moisture data leads to improved soil moisture updates, particularly for dry and wet conditions, and enhances initial conditions for runoff generation. Second or higher order bias correction, which includes a rescaling of the variance, decreases the temporal variability of the assimilation results. In comparison with in situ measurements of OzNet, the assimilation with mean bias correction reduces the root mean square error (RMSE) of the modeled soil moisture from 0.058 m 3 /m 3 to 0.046 m 3 /m 3 and increases the correlation from 0.564 to 0.714. These improvements in antecedent wetness conditions further translate into improved predictions of associated water fluxes, particularly runoff peaks. In conclusion, the results of this study clearly demonstrate the merit of SMOS data assimilation for soil moisture and streamflow predictions at the large scale.
The current study presents an algorithm to retrieve surface Soil Moisture (SM) from multi-temporal Synthetic Aperture Radar (SAR) data. The developed algorithm is based on the Cumulative Density Function (CDF) transformation of multi-temporal RADARSAT-2 backscatter coefficient (BC) to obtain relative SM values, and then converts relative SM values into absolute SM values using soil information. The algorithm is tested in a semi-arid tropical region in South India using 30 satellite images of RADARSAT-2, SMOS L2 SM products, and 1262 SM field measurements in 50 plots spanning over 4 years. The validation with the field data showed the ability of the developed algorithm to retrieve SM with RMSE ranging from 0.02 to 0. and a correlation coefficient of approximately 0.9. The developed model is compared and found to be better than the change detection and delta index model. The approach does not require calibration of any parameter to obtain relative SM and hence can easily be extended to any region having time series of SAR data available.Remote Sens. 2015, 7 8129
Soil moisture retrievals, delivered as a CATDS (Centre Aval de Traitement des Données SMOS) Level-3 product of the Soil Moisture and Ocean Salinity (SMOS) mission, form an important information source, particularly for updating land surface models. However, the coarse resolution of the SMOS product requires additional treatment if it is to be used in applications at higher resolutions. Furthermore, the remotely sensed soil moisture often does not reflect the climatology of the soil moisture predictions, and the bias between model predictions and observations needs to be removed. In this paper, a statistical framework is presented that allows for the downscaling of the coarse-scale SMOS soil moisture product to a finer resolution. This framework describes the interscale relationship between SMOS observations and model-predicted soil moisture values, in this case, using the variable infiltration capacity (VIC) model, using a copula. Through conditioning, the copula to a SMOS observation, a probability distribution function is obtained that reflects the expected distribution function of VIC soil moisture for the given SMOS observation. This distribution function is then used in a cumulative distribution function matching procedure to obtain an unbiased fine-scale soil moisture map that can be assimilated into VIC. The methodology is applied to SMOS observations over the Upper Mississippi River basin. Although the focus in this paper is on data assimilation apcations, the framework developed could also be used for other purposes where downscaling of coarse-scale observations is required.
Abstract:Groundwater accounts for half of Indian urban water use. However, little is known about its sustainability, because of inadequate monitoring and evaluation. We deployed a dense monitoring network in 154 locations in Bengaluru, India between 2015 and 2017. Groundwater levels collected at these locations were analyzed to understand the behavior of the city's groundwater system. At a local scale, groundwater behavior is non-classical, with valleys showing deeper groundwater than ridge-tops. We hypothesize that this is due to relatively less pumping compared to artificial recharge from leaking pipes and wastewater in the higher, city core areas, than in the rapidly growing, lower peripheral areas, where the converse is true. In the drought year of 2016, groundwater depletion was estimated at 27 mm, or 19 Mm 3 over the study area. The data show that rainfall has the potential to replenish the aquifer. High rainfall during August-September 2017 led to a mean recharge of 67 mm, or 47 Mm 3 for the study area. A rainfall recharge factor of 13.5% was estimated from the data for 2016. Sustainable groundwater management in Bengaluru must account for substantial spatial socio-hydrological heterogeneity. Continuous monitoring at high spatial density will be needed to inform evidence-based policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.