The subject of high-energy-density (HED) states in matter is of considerable importance to numerous branches of basic as well as applied physics. Intense heavy-ion beams are an excellent tool to create large samples of HED matter in the laboratory with fairly uniform physical conditions. Gesellschaft für Schwerionenforschung, Darmstadt, is a unique worldwide laboratory that has a heavy-ion synchrotron, SIS18, that delivers intense beams of energetic heavy ions. Construction of a much more powerful synchrotron, SIS100, at the future international facility for antiprotons and ion research (FAIR) at Darmstadt will lead to an increase in beam intensity by 3 orders of magnitude compared to what is currently available. The purpose of this Letter is to investigate with the help of two-dimensional numerical simulations, the potential of the FAIR to carry out research in the field of HED states in matter.
Intense heavy ion beams from the Gesellschaft für Schwerionenforschung~GSI, Darmstadt, Germany! accelerator facilities, together with two high energy laser systems: petawatt high energy laser for ion experiments~PHELIX! and nanosecond high energy laser for ion experiments~NHELIX! are a unique combination to facilitate pioneering beam-plasma interaction experiments, to generate and probe high-energy-density~HED! matter and to address basic physics issues associated with heavy ion driven inertial confinement fusion. In one class of experiments, the laser will be used to generate plasma and the ion beam will be used to study the energy loss of energetic ions in ionized matter, and to probe the physical state of the laser-generated plasma. In another class of experiments, the intense heavy ion beam will be employed to create a sample of HED matter and the laser beam, together with other diagnostic tools, will be used to explore the properties of these exotic states of matter. The existing heavy ion synchrotron facility, SIS18, deliver an intense uranium beam that deposit about 1 kJ0g specific energy in solid matter. Using this beam, experiments have recently been performed where solid lead foils had been heated and a brightness temperature on the order of 5000 K was measured, using a fast multi-channel pyrometer that has been developed jointly by GSI and IPCP Chernogolovka. It is expected that the future heavy ion facility, facility for antiprotons and ion research~FAIR! will provide compressed beam pulses with an intensity that exceeds the current beam intensities by three orders of magnitude. This will open up the possibility to explore the thermophysical and transport properties of HED matter in a regime that is very difficult to access using the traditional methods of shock compression. Beam plasma interaction experiments using dense plasmas with a G-parameter between 0.5 and 1.5 have also been carried out. This dense Ar-plasma was generated by explosively driven shockwaves and showed enhanced energy loss for Xe and Ar ions in the energy range between 5.9 to 11.4 MeV.
A specifically tailored plasma lens could shape a high-energy, heavy-ion beam into the form of a hollow cylinder without loss of beam intensity. It has been experimentally confirmed that both a positive as well as a negative radial gradient of the current density in the active plasma lens can be the underlying principle. Calculations were performed that yield the ideal current density distribution for both cases. A numerical simulation of an experiment with an intense ion beam highlights that the shaping of the beam increases the achievable compression in a lead sample.
This paper presents two-dimensional hydrodynamic simulations of implosion of a multilayered cylindrical target that is driven by an intense heavy ion beam which has an annular focal spot. The target consists of a hollow lead cylinder which is filled with hydrogen at one tenth of the solid density at room temperature. The beam is assumed to be made of 2.7-GeV/u uranium ions and six different cases for the beam intensity ͑total number of particles in the beam, N͒ are considered. In each of these six cases the particles are delivered in single bunches, 20 ns long. The simulations have been carried out using a two-dimensional hydrodynamic computer code BIG-2. A multiple shock reflection scheme is employed in these calculations that leads to very high densities of the compressed hydrogen while the temperature remains relatively low. In this study we have used two different equation-of-state models for hydrogen, namely, the SESAME data and a model that includes molecular dissociation that is based on a fluid variational theory in the neutral fluid region which is replaced by Padé approximation in the fully ionized plasma region. Our calculations show that the latter model predicts higher densities, higher pressures but lower temperatures compared to the SESAME model. The differences in the results are more pronounced for lower driving energies ͑lower beam intensities͒.
The Gesellschaft für Schwerionenforschung~GSI! Darmstadt has been approved to build a new powerful facility named FAIR~Facility for Antiprotons and Ion Research! which involves the construction of a new synchrotron ring SIS100. In this paper, we will report on the results of a parameter study that has been carried out to estimate the minimum pulse lengths and the maximum peak powers achievable, using bunch rotation RF gymnastic-including nonlinearities of the RF gap voltage in SIS100, using a longitudinal dynamics particle in cell~PIC! code, ESME. These calculations have shown that a pulse length of the order of 20 ns may be possible when no prebunching is performed while the pulse length gradually increases with the prebunching voltage. Three different cases, including 0.4 GeV0u, 1 GeV0u, and 2.7 GeV0u are considered for the particle energy. The worst case is for the kinetic energy of 0.4 GeV0u which leads to a pulse length of about 100 ns for a prebunching voltage of 100 kV~RF amplitude!. The peak power was found to have a maximum, however, at 0.5-1.5kV prebunching voltage, depending on the mean kinetic energy of the ions. It is expected that the SIS100 will deliver a beam with an intensity of 1-2 ϫ 10 12 ions. Availability of such a powerful beam will make it possible to study the properties of high-energy-density~HED! matter in a parameter range that is very difficult to access by other means. These studies involve irradiation of high density targets by the ion beam for which optimization of the target heating is the key problem. The temperature to which a target can be heated depends on the power that is deposited in the material by the projectile ions. The optimization of the power, however, depends on the interplay of various parameters including beam intensity, beam spot area, and duration of the ion bunch. The purpose of this paper is to determine a set of the above parameters that would lead to an optimized target heating by the future SIS100 beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.